

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/311858080

Functiona Analysis_v5

Data · April 2016

DOI: 10.13140/RG.2.2.30261.68325

citation 0	S	reads 14	
2 autho	rs:		
	S. Abdelmalek Université de Tébessa 24 PUBLICATIONS 93 CITATIONS SEE PROFILE		Samir Bendoukha Taibah University 19 PUBLICATIONS 9 CITATIONS SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Polynomial Matrices for Signal Processing and Communications View project

Project

Generalized Lengyel-Epstein System View project

All content following this page was uploaded by S. Abdelmalek on 23 December 2016.

Summary of the Course: Functional Analysis (Math-412)

Salem Abdelmalek & Samir Bendoukha¹

May 8, 2016 Version 1

¹Taibah University, Yanbu Branch

Contents

Pı	refac	e	ix		
1	Met	tric Spases	1		
	1.1	Convergence of Sequences	4		
	1.2	Cauchy Sequences	6		
	1.3	Complete Metric Spaces	7		
	1.4	Some Applications	8		
2	Nor	med Space	11		
	2.1	Convergent Sequences	17		
	2.2	Banach Spaces	17		
3	Inn	er Product Spaces	19		
	3.1	The Real Case	19		
	3.2	The Complex Case	26		
	3.3	Hilbert Spaces	30		
	3.4	Orthogonality	31		
	3.5	Projections	32		
4	Operators 35				
	$4.\overline{1}$	Fundamontal Theorems	43		

Preface

.....

Chapter 1

Metric Spases

Definition 1 Let X be a non-empty set $(X \neq \emptyset)$ and d a real-valued function defined on $X \times X$

$$d: X \times X \to \mathbb{R}$$
$$(a, b) \to d(a, b)$$

such that for $a, b \in X$: (i) $d(a,b) \ge 0$ and d(a,b) = 0 if and only if a = b. (ii) d(a,b) = d(b,a). (iii) $d(a,c) \le d(a,b) + d(b,c)$ (the triangle inequality) for a, b and c in X. Then, d is said to be a **metric** on X, (X,d) is called a **metric space**, and d(a,b) is referred to as the **distance** between a and b.

Example 2 The function

$$d: \quad \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
$$(a,b) \to |a-b|$$

is a metric on the set \mathbb{R} since (i) $d(a,b) = |a-b| \ge 0$ for all $a, b \in \mathbb{R}$, and $d(a,b) = 0 \Leftrightarrow |a-b| = 0 \Leftrightarrow a - b = 0 \Leftrightarrow a = b$. (ii) d(a,b) = |a-b| = |b-a| = d(b,a), and (iii) $d(a,c) = |a-c| = |a-b+b-c| \le |a-b| + |b-c| = d(a,b) + d(b,c)$. (this is deduced from the inequality $|x+y| \le |x| + |y|$). The distance d considered here is known as the **Euclidean metric** on \mathbb{R} . **Example 3** Similar to the previous example, we can show that the function

$$d: \mathbb{R}^{2} \times \mathbb{R}^{2} \to \mathbb{R}$$

((a₁, a₂), (b₁, b₂)) $\to \sqrt{(a_{1} - b_{1})^{2} + (a_{2} - b_{2})^{2}}$

is a metric on \mathbb{R}^2 . It is called the **Euclidean metric on** \mathbb{R}^2 .

Example 4 Let X be a non-empty set and d the function from $X \times X$ into \mathbb{R} defined by

$$d(a,b) = \begin{cases} 0 & \text{if } a = b \\ 1 & \text{if } a \neq b. \end{cases}$$

Then, d is a metric on X and is called the discret metic.

Example 5 We can define another metric on \mathbb{R}^2 by choosing

$$d^{*}((a_{1}, a_{2}), (b_{1}, b_{2})) = \max\{|a_{1} - b_{1}|, |a_{2} - b_{2}|\}$$

This form of distance can be generalised to n-dimensions, i.e. \mathbb{R}^n as

$$d^{*}(A, B) = \max_{i=\overline{1,n}} \{ |a_{i} - b_{i}| \},\$$

where $A = (a_1, a_2, ..., a_n)$ and $B = (b_1, b_2, ..., b_n)$.

Example 6 Yet another metric on \mathbb{R}^2 is given by

$$d_1((a_1, a_2), (b_1, b_2)) = |a_1 - b_1| + |a_2 - b_2|$$

which can also be generalized to \mathbb{R}^n as

$$d^{*}(A, B) = \sum_{i=1}^{n} |a_{i} - b_{i}|,$$

where $A = (a_1, a_2, ..., a_n)$ and $B = (b_1, b_2, ..., b_n)$.

Example 7 We can also define what is known as the Holder metric on \mathbb{R}^n by

$$d_p(A,B) = \sqrt[p]{\sum_{i=1}^n |a_i - b_i|^p},$$

with $p \in [p, \infty)$.

Many important examples of metric spaces are "function spaces". For these, the set X on which we put a metric is a set of functions. The following are some examples concerning function spaces.

Example 8 Let C[0,1] denote the set of continuous functions from [0,1] into \mathbb{R} . The following metric may be defined on this set

$$d(f,g) = \int_{0}^{1} |f(x) - g(x)| dx,$$

where f and g are in C[0,1].

Example 9 For the same set C[0,1] defined in the previous example, we define another metric as follows

$$d^{*}(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|.$$

Definition 10 Let (X, d) be a metric space and r any positive real number. The **open ball** about $a \in X$ of radius r is the set

$$B_r(a) = \{x \in X \mid d(x, a) < r\}.$$

Example 11 In the metrix space form by \mathbb{R} and the Euclidean metric, $B_r(a)$ is the open interval (a - r, a + r).

Example 12 In \mathbb{R}^2 with the Euclidean metric, $B_r(a)$ becomes the open disc with center a and radius r.

Example 13 In \mathbb{R}^2 with the metric d^* given by

$$d^*\left((a_1, a_2), (b_1, b_2)\right) = \max\left\{|a_1 - b_1|, |a_2 - b_2|\right\},\$$

the open ball $B_1((0,0))$ is the square plate depicted in Figure???.

Example 14 In \mathbb{R}^2 with the metric d_1 given by

$$d_1((a_1, a_2), (b_1, b_2)) = |a_1 - b_1| + |a_2 - b_2|,$$

the open ball $B_1((0,0))$ is the diamond shape depicted in Figure???

Corollary 15 Let (X, d) be a metric space and B_1 and B_2 open balls in (X, d). Then, $B_1 \cap B_2$ is a union of open balls in (X, d).

Proposition 16 Let (X, d) be a metric space. The collection of open balls in (X, d) is a basis for a topology τ on X.

Example 17 If d is the Euclidean metric on \mathbb{R} , then a basis for the topology τ induced by the metric d is the set of all open balls defined by

$$B_{\delta}(a) = (a - \delta, a + \delta).$$

Definition 18 Metrics on a set X are said to be equivalent if they induce the same topology on X.

Example 19 The metrics d, d^* , d_1 defined on \mathbb{R}^2 in examples 3, 5, and 6, respectively, are equivalent.

Proposition 20 Let (X, d) be a metric space and τ the topology induced on X by the metric d. A sub set U of X is open in (X, τ) if and only if $\forall a \in U, \exists \epsilon > 0$ such that the open ball $B_{\epsilon}(a) \subset U$.

Proposition 21 If (X, d) is a metric space and τ is the topology induced on X by d, then (X, τ) is a Hausdorff space $(T_2$ -space) defined as

 $\forall a, b \in X; a \neq b, \exists U, V \in \tau \text{ such that } a \in U, b \in V, and U \cap V = \emptyset.$ (1.1)

Proof. Since $a, b \in X$; $a \neq b$, then $d(a, b) = \epsilon > 0$. We can define the two open balls $U = B_{\frac{\epsilon}{2}}(a)$ and $V = B_{\frac{\epsilon}{2}}(b)$, which satisfy (1.1).

1.1 Convergence of Sequences

Definition 22 Let (X, d) be a metric space and $(x_n)_{n \in \mathbb{N}}$ a sequence of points in X. The sequence is said to converge to $x \in X$ if

$$\lim_{n \to \infty} d(x_n, x) = 0 \Leftrightarrow \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N} : n \ge n_0 \Rightarrow d(x_n, x) < \epsilon.$$

1.1 CONVERGENCE OF SEQUENCES

Example 23 consider the metric space $(\mathbb{R}, |\cdot|)$. The sequence $x_n = 1 + \frac{1}{n}$ converges to x = 1. First, we have

$$d(x_n, x) = \left| 1 + \frac{1}{n} - 1 \right|$$
$$= \frac{1}{n}.$$

Then, the limits of the distance as n approaches infinity is given by

$$\lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} \frac{1}{n}$$
$$= 0.$$

Therefore, (x_n) is convergent towards 1 in $(\mathbb{R}, |\cdot|)$.

Proposition 24 Any sequence $(x_n)_{n \in \mathbb{N}}$ defined in a metric space (X, d) is at most convergent towards a unique point, *i.e.*

$$\begin{cases} \lim_{n \to \infty} d(x_n, x) = 0\\ \lim_{n \to \infty} d(x_n, y) = 0 \end{cases} \Rightarrow x = y. \tag{1.2}$$

Proof. The aim is to prove (1.2). Assuming that $\lim_{n\to\infty} d(x_n, x) = 0$ leads to

$$\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N} : n \ge n_0 \Rightarrow d(x_n, x) < \epsilon, \tag{1.3}$$

and similarly $\lim_{n \to \infty} d(x_n, y) = 0$ yields

$$\forall \epsilon > 0, \exists n_1 \in \mathbb{N}, \forall n \in \mathbb{N} : n \ge n_1 \Rightarrow d(x_n, y) < \epsilon.$$
(1.4)

Hence, for any $n \ge \max\{n_0, n_1\}$, (1.3) and (1.4) imply that $d(x_n, x) < \epsilon$ and $d(x_n, y) < \epsilon$, which can be rewritten as

$$d(x_n, x) + d(x_n, y) < 2\epsilon.$$

Further simplification yields

$$d(x, y) \le d(x, x_n) + d(x_n, y) < 2\epsilon.$$

Therefore,

$$\forall \epsilon > 0 : d(x, y) < 2\epsilon \Rightarrow d(x, y) = 0 \Rightarrow x = y.$$

Proposition 25 Let (X, d) be a metric space. A subset A of X is said to be closed in (X, d) iff every convergent sequence of points in A converges to a point in A.

Example 26 The subset $A = \{1, \frac{1}{2}, \frac{1}{3}, ...\}$ of \mathbb{R} is not closed in $(\mathbb{R}, |\cdot|)$ since $\forall n \in \mathbb{N} : \frac{1}{n} \in A, \lim_{n \to \infty} \frac{1}{n} = 0 \notin A.$

Example 27 The subset \mathbb{Q} of \mathbb{R} is not closed in $(\mathbb{R}, |\cdot|)$ as the sequence $\left(1+\frac{1}{n}\right)^n \in \mathbb{Q}$ converges towards $\lim_{n \to \infty} \left(1+\frac{1}{n}\right)^n = e \notin \mathbb{Q}$.

Proposition 28 Let (X, d) and (Y, d') be metric spaces and f a mapping of X into Y, then f is continuous at $x_0 \in X$ iff $\lim_{d(x,x_0)\to 0} d'(f(x), f(x_0)) = 0$, *i.e.*

$$\forall \epsilon > 0, \exists \delta > 0, \forall x : d(x, x_0) < \delta \Rightarrow d'(f(x), f(x_0)) < \epsilon.$$

Example 29 Consider the mapping

$$f (\mathbb{R}, |\cdot|) \to (\mathbb{R}, |\cdot|)$$
$$x \to f(x),$$

which is continuous at x_0 iff $\lim_{|x-x_0|\to 0} |f(x) - f(x_0)| = 0$, which is equivalent to $\lim_{x\to x_0} f(x) = f(x_0)$, i.e.

$$\forall \epsilon > 0, \exists \delta > 0, \forall x : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon.$$

Exercise 30 Let $X = \mathbb{R}$ and $d(x, y) = \begin{cases} 1; x \neq y \\ 0; x = y \end{cases}$. Is the sequence $\left(\frac{1}{n}\right)$

convergent? Justify your answer.

1.2 Cauchy Sequences

Definition 31 (Cauchy sequence) Let (X, d) be a metric space. The sequence $\{x_n\} \subset X$ is called a Cauchy sequence if

$$\lim_{n,m\to\infty} d\left(x_n, x_m\right) = 0,$$

which can be written as

$$\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, m \in \mathbb{N} : n, m \ge n_0 \Rightarrow d(x_n, x_m) < \epsilon.$$

1.3 COMPLETE METRIC SPACES

Proposition 32 In $(\mathbb{R}, |\cdot|)$, the sequence is Cauchy sequence iff it is a convergent.

Example 33 Consider the metric space (X, d), where $X = \mathbb{N}$ and $d(n, m) = \left|\frac{1}{n} - \frac{1}{m}\right|$. We want to show that the sequence $\{n\}$ is a Cauchy sequence but that it is not convergent. We have

$$d(x_n, x_m) = d(n, m)$$
$$= \left|\frac{1}{n} - \frac{1}{m}\right| \le \frac{1}{n} + \frac{1}{m}.$$

Taking the limist as n and m approch infinity yields

$$0 \le \lim_{n,m \to \infty} d(x_n, x_m) \le \lim_{n,m \to \infty} \left(\frac{1}{n} + \frac{1}{m}\right) = 0.$$

Therefore,

$$\lim_{n,m\to\infty} d\left(x_n, x_m\right) = 0,$$

which proves that $\{n\}$ is a Cauchy sequence. However, assume that the sequence converge towards a value $a \in \mathbb{N}$, *i.e.*

$$\lim_{n \to \infty} d(x_n, a) = \lim_{n \to \infty} d(n, a)$$
$$= \frac{1}{a} \neq 0,$$

which is a contradiction. Hence, the sequence is divergent.

1.3 Complete Metric Spaces

Definition 34 A metric space is called complete if every Cauchy sequence defined in it converges to an element of the space.

Example 35 The metric space (X, d) with $X = \mathbb{N}$ and $d(n, m) = \left|\frac{1}{n} - \frac{1}{m}\right|$ is not complete.

Example 36 The metric space $((0,1], |\cdot|)$ is not complete since, for instance, the sequence $\{\frac{1}{n}\}$ is a Cauchy sequence that converges to the point $0 \notin (0,1]$.

Example 37 The metric space $(\mathbb{R}, |\cdot|)$ is complete following Proposition 32.

1.4 Some Applications

Are the following applications valid distances (metric)?

- $X = \mathbb{R}, \ d(x, y) = |x^2 y^2|.$ (not metric)
- $X = [0, \frac{\pi}{2}], \ d(x, y) = \sin |x y|.$ (metric)
- $X = [0, \frac{\pi}{2}], \ d(x, y) = \cos|x y|.$ (not metric)
- $X = \mathbb{N}, d(n,m) = |n-m|.$ (metric)
- $X = \mathbb{N}, \ d(n,m) = \left|\frac{1}{n} \frac{1}{m}\right|.$ (metric)

•
$$X = \mathbb{N}, \ d(n,m) = \begin{cases} 1; n \neq m \\ 0; n = m \end{cases}$$
. (metric)

- X = C[a, b] is the space of continuous function on [a, b] and $d(f, g) = \begin{cases} 1; f \neq g \\ 0; f = g \end{cases}$. (metric)
- $X = C_0$ is the space of all sequences that converge to 0 and $d(x, y) = \sup_{n \in \mathbb{N}} |x_n y_n|$ such that $x = (x_n)$ and $y = (y_n)$. (metric)
- $X = \ell_p : p \in [1, \infty)$ is the space of all sequences (x_n) such that $\sum_{n=1}^{\infty} |x_n|^p < \infty$ (series is convergent) and $d_p(x, y) = \left(\sum_{n=1}^{\infty} |x_n - y_n|^p\right)^{\frac{1}{p}}$. (metric)

• $X = \ell_{\infty}$ is the space of all bounded sequences and $d_{\infty}(x, y) = \sup_{n \in \mathbb{N}} |x_n - y_n|$ such that $x = (x_n)$ and $y = (y_n)$. (metrix) Also prove that

$$\ell_1 \subset \ell_2 \subset \dots \subset C_0 \subset \ell_\infty$$

and

$$d_{\infty}(x,y) = \lim_{n \to \infty} d_p(x,y) \, .$$

1.4 SOME APPLICATIONS

- $X = L_p[a, b]$ is the space of *p*-integrable functions on [a, b], i.e. $\int_a^b |f(x)|^p dx < \infty$, and $d_p(f, g) = \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}}$. (metric) If $f(x) = \frac{1}{x}, g(x) = \frac{2}{x} \in L_1[1, 4]$, find the distance $d_1\left(\frac{1}{x}, \frac{2}{x}\right)$.
- $X = L_{\infty}[a, b]$ is the space of essentially bounded functions on [a, b] and $d_{\infty}(f, g) = \operatorname{essup}_{x \in [a, b]} |f(x) g(x)|$. (metric) Also prove that

$$L_{\infty}[a,b] \subset \dots \subset L_{2}[a,b] \subset L_{1}[a,b]$$

• Let (X, d) be a metric space. Prove that $d'(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ is also a distance.

Chapter 2

Normed Space

Definition 38 Let X be a linear space. The function

 $\begin{aligned} \|\cdot\|: \ X \to \mathbb{R} \\ x \to \|x\| \end{aligned}$

is said to be a **norm** if it satisfies the conditions (1) $\forall x \in X : ||x|| \ge 0$ and $||x|| = 0 \Leftrightarrow x = 0$. (2) $\forall x \in X, \forall \lambda \in \mathbb{R} \text{ or } \mathbb{C} : ||\lambda x|| = |\lambda| ||x||$. (3) $\forall x, y \in X : ||x + y|| \le ||x|| + ||y||$. In this case $(X, ||\cdot||)$ is called a **normed space**.

Remark 39 The second condition implies

||-x|| = ||x||.

Example 40 Let $X = \mathbb{R}$ and ||x|| = |x|, then $(\mathbb{R}, |\cdot|)$ is a normed space since (1) $\forall x \in \mathbb{R} : |x| \ge 0$ and $|x| = 0 \Leftrightarrow x = 0$. (2) $\forall x \in \mathbb{R}, \forall \lambda \in \mathbb{R} : |\lambda x| = |\lambda| |x|$. (3) $\forall x, y \in \mathbb{R} : |x + y| \le |x| + |y|$.

Example 41 Let X = C[a,b] and $||f|| = \sup_{t \in [a,b]} |f(t)|$, then $(X, ||\cdot||)$ is a

normed space as shown below: (1) $\forall f \in X : ||f|| = \sup_{t \in [a,b]} |f(t)| \ge 0$ and

$$\|f\| = 0 \Leftrightarrow \sup_{t \in [a,b]} |f(t)| = 0$$

$$\Leftrightarrow \forall t \in [a,b] : |f(t)| = 0$$

$$\Leftrightarrow \forall t \in [a,b] : f(t) = 0$$

$$\Leftrightarrow f \equiv 0.$$

(2) $\forall f \in X, \ \forall \lambda \in \mathbb{R} \ we \ have$

$$\begin{aligned} \|\lambda f\| &= \sup_{t \in [a,b]} |\lambda f(t)| \\ &= \sup_{t \in [a,b]} |\lambda| |f(t)| \\ &= |\lambda| \sup_{t \in [a,b]} |f(t)| \\ &= |\lambda| \|\|f\|. \end{aligned}$$

(3) $\forall f, g \in X$ we have

$$\|f + g\| = \sup_{t \in [a,b]} |(f + g)(t)|$$

= $\sup_{t \in [a,b]} |f(t) + g(t)|$
 $\leq \sup_{t \in [a,b]} |f(t)| + \sup_{t \in [a,b]} |g(t)|$
= $\|f\| + \|g\|$.

For instance, consider the function

$$f(t) = t - \cos t \in C[0,\pi].$$

The defined norm is given by

$$||f|| = \sup_{t \in [0,\pi]} |t - \cos t|.$$

In order to calculate the supremum, first, take the derivative $f'(t) = 1 - \sin x > 0$, meaning that f is increasing. Hence,

$$\|f\| = \sup_{t \in [0,\pi]} |t - \cos t|$$
$$= \pi - \cos \pi$$
$$= \pi + 1.$$

Proposition 42 Let $(X, \|\cdot\|)$ be a normed space, then

_

$$\forall x, y \in X : |||x|| - ||y||| \le ||x - y||$$

Proof. First, we know that

$$||x|| = ||x - y + y|| \le ||x - y|| + ||y||_{2}$$

which can be rewritten as

$$||x|| - ||y|| \le ||x - y||.$$
(2.1)

Similarly, we have

$$||y|| = ||y - x + x|| \le ||y - x|| + ||x||,$$

yielding

$$-\|x - y\| \le \|x\| - \|y\| \tag{2.2}$$

From (2.1) and (2.2) we get

$$-\|x - y\| \le \|x\| - \|y\| \le \|x - y\|,$$

which simplifies to

$$|||x|| - ||y||| \le ||x - y||.$$

Example 43 Consider the metric space formed by $X = L_p[a, b]$ and $||x|| = \left(\int_a^b |x(t)|^p dx\right)^{\frac{1}{p}}$, then $\left(L_p[a, b], ||\cdot||\right)$ is a normed space as proven below:

(1)
$$\forall x \in X : ||x|| = \left(\int_a^b |x(t)|^p dx\right)^{\frac{1}{p}} \ge 0$$
, and
 $||x|| = 0 \Leftrightarrow \left(\int_a^b |x(t)|^p dx\right)^{\frac{1}{p}} = 0$
 $\Leftrightarrow \int_a^b |x(t)|^p dx = 0$
 $\Leftrightarrow \forall t \in [a, b] : |x(t)|^p = 0$
 $\Leftrightarrow \forall t \in [a, b] : |x(t)| = 0$
 $\Leftrightarrow \forall t \in [a, b] : x(t) = 0$
 $\Leftrightarrow x \equiv 0.$

(2) $\forall x \in X, \ \forall \lambda \in \mathbb{R}, \ then$

$$\|\lambda x\| = \left(\int_{a}^{b} |\lambda x(t)|^{p} dx\right)^{\frac{1}{p}}$$
$$= \left(|\lambda|^{p} \int_{a}^{b} |x(t)|^{p} dx\right)^{\frac{1}{p}}$$
$$= |\lambda| \left(\int_{a}^{b} |x(t)|^{p} dx\right)^{\frac{1}{p}}$$
$$= |\lambda| \|x\|.$$

(3) $\forall x, y \in X$, we have

$$||x + y|| = \left(\int_{a}^{b} |(x + y)(t)|^{p} dx\right)^{\frac{1}{p}}$$

= $\left(\int_{a}^{b} |x(t) + y(t)|^{p} dx\right)^{\frac{1}{p}}$
 $\leq \left(\int_{a}^{b} |x(t)|^{p} dx\right)^{\frac{1}{p}} + \left(\int_{a}^{b} |y(t)|^{p} dx\right)^{\frac{1}{p}}$
= $||x|| + ||y||.$

15

Take, for instance, the function $x(t) = \frac{1}{x} \in L_2[1, 4]$, then

$$||x|| = \left(\int_{1}^{4} |x(t)|^{2} dx\right)^{\frac{1}{2}}$$
$$= \left(\int_{1}^{4} \left|\frac{1}{x}\right|^{2} dx\right)^{\frac{1}{2}}$$
$$= \frac{1}{2}\sqrt{3}.$$

Example 44 Let $X = C_0$ be the space of all sequences that converge to 0 and $||x|| = \sup_{n \in \mathbb{N}} |x_n|, x = (x_n) (C_0, || \cdot ||)$, then $(C_0, || \cdot ||)$ is a normed space. For instance, consider the sequences

$$x = \left(\frac{1}{n}\right) = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\right\} \in C_0,$$

with the norm

$$||x|| = \sup_{n \in \mathbb{N}} \left| \frac{1}{n} \right|$$

= 1,

and

$$y = \left(\frac{1}{2^n}\right) = \left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots, \frac{1}{n}, \dots\right\} \in C_0,$$

with the norm

$$\|y\| = \sup_{n \in \mathbb{N}} \left| \frac{1}{2^n} \right|$$

= $\frac{1}{2}$.

Example 45 The metric space $(X, \|\cdot\|)$ in each of the following three cases is a normed space:

$$X = \ell_{\infty}, \qquad ||x|| = \sup_{n \in \mathbb{N}} |x_n|$$
$$X = \ell_p, \qquad ||x|| = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}}$$
$$X = L_p[a, b] \quad ||x|| = \operatorname{essup}_{t \in [a, b]} |x(t)|.$$

Note that there is a difference between the supremum (sup) and essential supremum (esssup). For instance, if

$$x(t) = \begin{cases} 1, t \in [0, 1) \\ 2, t = 1, \end{cases}$$

then

$$\operatorname{esssup}_{t\in[0,1]} |x(t)| = 1,$$

but

$$\sup_{t \in [0,1]} |x(t)| = 2.$$

Example 46 Consider the sequence

$$x = \frac{3}{\sqrt{n\left(n+1\right)}} \in \ell_2.$$

The following is a valid norm for ℓ_2

$$||x|| = \left(\sum_{n=1}^{\infty} |x_n|^2\right)^{\frac{1}{2}} \\ = \left(\sum_{n=1}^{\infty} \frac{9}{n(n+1)}\right)^{\frac{1}{2}} \\ = 3\left(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}\right)^{\frac{1}{2}} \\ = 3\left(\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)\right)^{\frac{1}{2}} \\ = 3.$$

Remark 47 Note that in the definition of a normed space, it was explicitly required that the space be a linear (vector) space. However, this is not a condition for the space to be metric. Thus, a metric space is not necessarily a normed space.

2.1 CONVERGENT SEQUENCES

Theorem 48 Every normed space is a metric space.

Proof. Let $(X, \|\cdot\|)$ be a normed space and define $d(x, y) = \|x - y\|$. We have:

(1) $d(x,y) = ||x-y|| \ge 0$ and $d(x,y) = 0 \Leftrightarrow ||x-y|| = 0 \Leftrightarrow x-y =$ $0 \Leftrightarrow x = y.$ (2) d(x, y) = ||x - y|| = ||y - x|| = d(y, x). (3) $d(x, y) = ||x - y|| = ||x - z + z - y|| \le ||x - z|| + ||z - y|| = d(x, z) + ||z - y|| = ||z - y||$ d(z,y).

It simply follows that (X, d) is a metric space.

2.1**Convergent Sequences**

Definition 49 A sequence $\{x_n\}$ is convergent to a point *a* in the normed space $(X, \|\cdot\|)$ iff:

$$\lim_{n \to \infty} \|x_n - a\| = 0,$$

which can be written as

$$\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N} : n \ge n_0 \Rightarrow ||x_n - a|| < \epsilon.$$

$\mathbf{2.2}$ **Banach Spaces**

Definition 50 The normed space $(X, \|\cdot\|)$ is called a Banach space if every Cauchy sequence is convergence in X.

Chapter 3

Inner Product Spaces

3.1 The Real Case

Definition 51 Let X be a vector space on \mathbb{R} . The inner product $\langle x, y \rangle$ such that

$$\langle \cdot, \cdot \rangle \ X \times X \to \mathbb{R}$$

 $(x, y) \to \langle x, y \rangle,$

satisfies the following conditions: (1) $\forall x \in X : \langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$. (2) $\forall x, y \in X : \langle x, y \rangle = \langle y, x \rangle$. (3) $\forall x, y \in X, \forall \lambda \in \mathbb{R} : \langle \lambda x, y \rangle = \lambda \langle x, y \rangle$. (4) $\forall x, y, z \in X : \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$. The space $(X, \langle \cdot, \cdot \rangle)$ is called an inner product space.

Remark 52 Based on the properties stated in Definition 51, we have: (1) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$. (2) $\langle x, \alpha y \rangle = \alpha \langle x, y \rangle$. (3) $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$.

Example 53 Let $X = \mathbb{R}$ and $\langle x, y \rangle = xy$. Then, $(\mathbb{R}, \langle \cdot, \cdot \rangle)$ is an inner product space as it satisfies the four conditions: (1) $\forall x \in \mathbb{R} : \langle x, x \rangle = x^2 \ge 0$ and

$$\langle x, x \rangle = 0 \Leftrightarrow x^2 = 0 \Leftrightarrow x = 0.$$

$$\begin{array}{l} (2) \ \forall x, y \in \mathbb{R} : \langle x, y \rangle = xy = yx = \langle y, x \rangle \,. \\ (3) \ \forall x, y, \lambda \in \mathbb{R} : \langle \lambda x, y \rangle = \lambda xy = \lambda \, \langle x, y \rangle \,. \\ (4) \ \forall x, y, z \in \mathbb{R} : \langle x + y, z \rangle = (x + y) \, z = xz + yz = \langle x, z \rangle + \langle y, z \rangle \,. \end{array}$$

Example 54 Let $X = L_2[a,b]$ and $\langle f,g \rangle = \int_a^b f(t) g(t) dt$. We have: (1) $\langle f,f \rangle = \int_a^b (f(t))^2 dt \ge 0$ and

$$\langle f, f \rangle = 0 \Leftrightarrow \int_{a}^{b} (f(t))^{2} dt = 0$$

$$\Leftrightarrow \forall t \in [a, b] : (f(t))^{2} = 0$$

$$\Leftrightarrow \forall t \in [a, b] : f(t) = 0$$

$$\Leftrightarrow f \equiv 0.$$

$$\begin{array}{l} (2) \ \langle f,g\rangle = \int_{a}^{b} f\left(t\right)g\left(t\right)dt = \int_{a}^{b} g\left(t\right)f\left(t\right)dt = \langle g,f\rangle \,. \\ (3) \ \langle \lambda f,g\rangle = \int_{a}^{b} \lambda f\left(t\right)g\left(t\right)dt = \lambda \int_{a}^{b} f\left(t\right)g\left(t\right)dt = \lambda \left\langle f,g\right\rangle \,. \\ (4) \ \langle f+g,h\rangle = \int_{a}^{b} \left(f+g\right)\left(t\right)h\left(t\right)dt = \int_{a}^{b} \left[f\left(t\right)+g\left(t\right)\right]h\left(t\right)dt = \int_{a}^{b} f\left(t\right)h\left(t\right)dt + \int_{a}^{b} g\left(t\right)h\left(t\right)dt = \langle f,h\rangle + \langle g,h\rangle \,. \\ Therefore, \ \left(L_{p}\left[a,b\right],\langle\cdot,\cdot\rangle\right) \text{ is an inner product space.} \end{array}$$

Example 55 Let $X = \ell_2$ and $\langle x, y \rangle = \sum_{n=1}^{\infty} |x_n y_n|$. Is $(X, \langle \cdot, \cdot \rangle)$ an inner product space? We have:

(1)
$$\forall x \in \ell_2 : \langle x, x \rangle = \sum_{n=1}^{\infty} x_n^2 \ge 0$$
 and
 $\langle x, x \rangle = 0 \Leftrightarrow \sum_{n=1}^{\infty} x_n^2 = 0$
 $\Leftrightarrow \forall n \in \mathbb{N} : x_n^2 = 0$
 $\Leftrightarrow \forall n \in \mathbb{N} : x_n = 0$
 $\Leftrightarrow x = 0.$

(2)
$$\forall x, y \in \ell_2 : \langle x, y \rangle = \sum_{n=1}^{\infty} |x_n y_n| = \sum_{n=1}^{\infty} |y_n x_n| = \langle y, x \rangle.$$

3.1 THE REAL CASE

(3)
$$\forall x, y \in \ell_2, \forall \lambda \in \mathbb{R} : \langle \lambda x, y \rangle = \sum_{n=1}^{\infty} |\lambda x_n y_n| = |\lambda| \sum_{n=1}^{\infty} |x_n y_n| = |\lambda| \langle x, y \rangle \neq \lambda \langle x, y \rangle$$
 if $\lambda < 0$.

Hence, $\langle \cdot, \cdot \rangle$ is not an inner product and, consequently, $(\ell_2, \langle \cdot, \cdot \rangle)$ is not an inner product space.

Example 56 Let $X = \ell_2$ and $\langle x, y \rangle = \sum_{n=1}^{\infty} x_n y_n$. Is $(X, \langle \cdot, \cdot \rangle)$ an inner product space? (1) $\forall x \in \ell_2 : \langle x, x \rangle = \sum_{n=1}^{\infty} x_n^2 \ge 0$ and $\langle x, x \rangle = 0 \Leftrightarrow \sum_{n=1}^{\infty} x_n^2 = 0$

$$\begin{array}{l} \overset{n=1}{\Leftrightarrow} \forall n \in \mathbb{N} : x_n^2 = 0 \\ \Leftrightarrow \forall n \in \mathbb{N} : x_n = 0 \\ \Leftrightarrow x = 0. \end{array}$$

$$(2) \ \forall x, y \in \ell_2 : \langle x, y \rangle = \sum_{n=1}^{\infty} x_n y_n = \sum_{n=1}^{\infty} y_n x_n = \langle y, x \rangle .$$

$$(3) \ \forall x, y \in \ell_2, \forall \lambda \in \mathbb{R} : \langle \lambda x, y \rangle = \sum_{n=1}^{\infty} \lambda x_n y_n = \lambda \sum_{n=1}^{\infty} x_n y_n = \lambda \langle x, y \rangle .$$

$$(4) \ \forall x, y, z \in \ell_2 : \langle x + y, z \rangle = \sum_{n=1}^{\infty} (x_n + y_n) z_n = \sum_{n=1}^{\infty} x_n z_n + \sum_{n=1}^{\infty} y_n z_n = \langle x, z \rangle + \langle y, z \rangle .$$

$$(4) \ \forall x, y, z \in \ell_2 : \langle x + y, z \rangle = \sum_{n=1}^{\infty} (x_n + y_n) z_n = \sum_{n=1}^{\infty} x_n z_n + \sum_{n=1}^{\infty} y_n z_n = \langle x, z \rangle + \langle y, z \rangle .$$

$$Therefore, \ (\ell_2, \langle \cdot, \cdot \rangle) \ is \ an \ inner \ product \ space.$$

Example 57 Consider the two functions f(t) = t and $g(t) = \cos t$ in $L_2[0,\pi]$. The inner product as defined in Example 54 can be calculated as

$$\langle f,g\rangle = \int_0^\pi f(t) g(t) dt = \int_0^\pi t \cos t dt = t \sin t]_0^\pi - \int_0^\pi \sin t dt = \cos t]_0^\pi = -2.$$

Example 58 Consider the two sequences

$$x = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots\right\} \in \ell_2,$$

and

$$y = \{1, 1, 0, \dots\} \in \ell_2.$$

The inner product of the two sequences as defined in Example 56 is given by

$$\langle x, y \rangle = \sum_{n=1}^{\infty} x_n y_n$$

$$= 1 + \frac{1}{2} + 0 + 0 \dots$$

$$= \frac{3}{2}.$$

Proposition 59 Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space and define

$$\|x\| = \sqrt{\langle x, x \rangle}.$$

Then,

$$|\langle x, y \rangle| \le ||x|| \cdot ||y|| \,.$$

Proof. Let

$$\lambda = \frac{\langle x, y \rangle}{\langle y, y \rangle} = \frac{\langle x, y \rangle}{\|y\|^2}.$$

We have $0 \le ||x - \lambda y||^2 = \langle x - \lambda y, x - \lambda y \rangle$

$$\begin{aligned} \|x - \lambda y\|^2 &= \langle x - \lambda y, x - \lambda y \rangle \\ &= \langle x, x - \lambda y \rangle - \lambda \langle y, x - \lambda y \rangle \\ &= \langle x, x \rangle - \lambda \langle x, y \rangle - \lambda \langle y, x \rangle + \lambda^2 \langle y, y \rangle \\ &= \|x\|^2 - 2\lambda \langle x, y \rangle + \lambda^2 \|y\|^2 \\ &= \|x\|^2 - 2\left(\frac{\langle x, y \rangle}{\|y\|^2}\right) \langle x, y \rangle + \left(\frac{\langle x, y \rangle}{\|y\|^2}\right)^2 \|y\|^2 \\ &= \|x\|^2 - 2\frac{\langle x, y \rangle^2}{\|y\|^2} + \frac{\langle x, y \rangle^2}{\|y\|^2} \\ &= \|x\|^2 - \frac{\langle x, y \rangle^2}{\|y\|^2} \ge 0, \end{aligned}$$

which is rearranged to produce

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||.$$

Proposition 60 Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space. Then, $(X, \|\cdot\|)$ is a normed space where $\|x\| = \sqrt{\langle x, x \rangle}$.

Proof. We aim to prove that $||x|| = \sqrt{\langle x, x \rangle}$ is a valid norm by checking the conditions in Definition ??:

(1) We have

$$\forall x \in X : \langle x, x \rangle \ge 0 \Rightarrow \sqrt{\langle x, x \rangle} \ge 0 \Rightarrow ||x|| \ge 0,$$

and

$$|x|| = 0 \Leftrightarrow \sqrt{\langle x, x \rangle} = 0 \Leftrightarrow \langle x, x \rangle = 0 \Leftrightarrow x = 0.$$

(2) We also have

$$\begin{aligned} |\lambda x|| &= \sqrt{\langle \lambda x, \lambda x \rangle} \\ &= \sqrt{\lambda^2 \langle x, x \rangle} \\ &= |\lambda| \sqrt{\langle x, x \rangle} \\ &= |\lambda| ||x|| . \end{aligned}$$

(3) Lastly,

$$||x + y||^{2} = \langle x + y, x + y \rangle$$

= $||x||^{2} + ||y||^{2} + 2 \langle x, y \rangle$
 $\leq ||x||^{2} + ||y||^{2} + 2 ||x|| \cdot ||y||$
= $(||x|| + ||y||)^{2}$,

which yields

$$||x + y|| \le ||x|| + ||y||$$

Therefore, $\|\cdot\|$ is a norm and $(X, \|\cdot\|)$ is a normed space.

Proposition 61 Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space and define $||x|| = \sqrt{\langle x, x \rangle}$. Then,

$$||x+y||^{2} + ||x-y||^{2} = 2(||x||^{2} + ||y||^{2}).$$
(3.1)

Remark 62 Not all norms are induced by an inner product. For a valid norm to be induced by an inner product, it has to satisfy the equality 3.1.

Proof. Counter example: Consider the normed space $(C[0,1], \|\cdot\|)$ where $\|x\| = \sup_{t \in [0,1]} |x(t)|$ and defined the functions

$$x(t) = 1, y(t) = t; t \in [0, 1],$$

which are clearly elements of C[0,1]. We have

$$||x|| = 1, ||y|| = \sup_{t \in [0,1]} |t| = 1,$$

leading to

$$||x + y|| = \sup_{t \in [0,1]} |x(t) + y(t)|$$

=
$$\sup_{t \in [0,1]} |1 + t|$$

= 2,

and

$$||x - y|| = \sup_{t \in [0,1]} |x(t) - y(t)|$$

=
$$\sup_{t \in [0,1]} |1 - t|$$

= 1.

Since

$$||x + y||^{2} + ||x - y||^{2} = 5 \neq 4 = 2(||x||^{2} + ||y||^{2}),$$

then, C[0,1] is not an inner product space.

Counter example: Consider the normed space $(\ell_{\infty}, \|\cdot\|)$ where $\|x\| = \sup_{n \in \mathbb{N}} |x_n|$ and let

$$x = (0, 1, 0, 1, ...) \in \ell_{\infty}, \ ||x|| = 1,$$

and

$$y = (1, 0, 1, 0, ...) \in \ell_{\infty}, ||y|| = 1.$$

We have

$$x + y = (1, 1, 1, 1, ...) \in \ell_{\infty}, ||x + y|| = 1,$$

and

$$x - y = (-1, 1, -1, 1, ...) \in \ell_{\infty}, \ ||x - y|| = 1,$$

leading to

$$||x + y||^{2} + ||x - y||^{2} = 2 \neq 4 = 2(||x||^{2} + ||y||^{2}).$$

Counter example: Consider the normed space $(\ell_p, \|\cdot\|)$ where $\|x\| = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}}$; $p \neq 2$, and define

$$x = (1, 1, 0, 0, ...), y = (1, -1, 0, 0, ...) \in \ell_p.$$

The sum in difference are given by

$$x + y = (2, 0, 0, 0, ...),$$

and

$$x - y = (0, 2, 0, 0, ...),$$

respectively. We have the norms

$$||x|| = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} = 2^{\frac{1}{p}},$$
$$||y|| = \left(\sum_{n=1}^{\infty} |y_n|^p\right)^{\frac{1}{p}} = 2^{\frac{1}{p}},$$
$$||x+y|| = \left(\sum_{n=1}^{\infty} |x_n+y_n|^p\right)^{\frac{1}{p}} = 2,$$

and

$$||x - y|| = \left(\sum_{n=1}^{\infty} |x_n - y_n|^p\right)^{\frac{1}{p}} = 2,$$

leading to

$$||x + y||^2 + ||x - y||^2 = 8,$$

and

$$2\left(\|x\|^{2} + \|y\|^{2}\right) = 4 \cdot 2^{\frac{2}{p}}.$$

This leads to a contradiction as

$$4 \cdot 2^{\frac{2}{p}} = 8 \Leftrightarrow p = 2$$

which in our case yields

$$||x + y||^{2} + ||x - y||^{2} \neq 2(||x||^{2} + ||y||^{2}).$$

Thus, $(\ell_p, \|\cdot\|)$ is not an inner product space for $p \neq 2$.

3.2 The Complex Case

Definition 63 Let X be a vector space on \mathbb{C} . The inner product $\langle x, y \rangle$ such that

$$\begin{array}{l} \langle \cdot, \cdot \rangle \ X \times X \to \mathbb{C} \\ (x, y) \to \langle x, y \rangle \,, \end{array}$$

satisfies the following conditions:

 $\begin{array}{l} (1) \ \forall x \in X : \langle x, x \rangle \geq 0 \ \underline{and} \ \langle x, x \rangle = 0 \Leftrightarrow x = 0. \\ (2) \ \forall x, y \in X : \langle x, y \rangle = \overline{\langle y, x \rangle}. \\ (3) \ \forall x, y \in X, \ \forall \lambda \in \mathbb{C} : \langle \lambda x, y \rangle = \lambda \ \langle x, y \rangle . \\ (4) \ \forall x, y, z \in X : \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle . \\ It follows that (X, \langle \cdot, \cdot \rangle) \ is \ called \ an \ inner \ product \ space. \end{array}$

Proposition 64 The conditions shown in Definition 63 yields the following for $\alpha, \beta \in \mathbb{C}$ and $x, y, z \in X$:

 $\begin{array}{l} (1) \ \langle \alpha x + \beta y, \underline{z} \rangle = \alpha \ \langle x, \underline{z} \rangle + \beta \ \langle y, \underline{z} \rangle \,. \\ (2) \ \langle x, \alpha y \rangle = \overline{\langle \alpha y, \underline{x} \rangle} = \overline{\alpha} \ \overline{\langle y, x \rangle} = \overline{\alpha} \ \overline{\langle y, x \rangle} = \overline{\alpha} \ \overline{\langle x, y \rangle} \,. \\ (3) \ \langle x, \alpha y + \beta z \rangle = \overline{\langle \alpha y + \beta z, x \rangle} = \overline{\alpha} \ \overline{\langle y, x \rangle} + \overline{\beta} \ \overline{\langle z, x \rangle} = \overline{\alpha} \ \langle x, y \rangle + \overline{\beta} \ \langle x, z \rangle \,. \end{array}$

Example 65 Consider the vector space $X = \mathbb{C}$. We define the inner product as

$$\langle x, y \rangle = x\overline{y}.$$

Then, $(\mathbb{C}, \langle \cdot, \cdot \rangle)$ is an inner product space.

In order to show that $\langle \cdot, \cdot \rangle$ is an inner product, we verify the conditions of Definition 63:

(1) The first condition is $\forall x \in \mathbb{C} : \langle x, x \rangle \ge 0$, which is clear as

$$\langle x, x \rangle = x\overline{x} \\ = \|x\|_2^2 \ge 0.$$

3.2 THE COMPLEX CASE

Also

$$\langle x, x \rangle = 0 \Leftrightarrow ||x||_2^2 = 0 \Leftrightarrow x = 0.$$

(2) The second condition is $\forall x, y \in \mathbb{C} : \langle x, y \rangle = \overline{\langle y, x \rangle}$, which can be verified as

$$\langle x, y \rangle = x\overline{y} = \overline{y}x = y\overline{x} = \langle y, x \rangle.$$

(3) The third condition is $\forall \lambda \in \mathbb{C}, \forall x, y \in \mathbb{C}$. We have

$$\begin{array}{ll} \langle \lambda x, y \rangle \; = \; \lambda x \overline{y} \\ \\ = \; \lambda \left\langle x, y \right\rangle \end{array}$$

(4) The last condition is $\forall x, y, z \in \mathbb{C} : \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$, which is verified by

$$\langle x+y,z\rangle = (x+y)\,\overline{z} = x\overline{z} + y\overline{z} = \langle x,z\rangle + \langle y,z\rangle$$

Example 66 Let $X = L_2[a, b]$ on \mathbb{C} and $f \in X$, i.e. $f : [a, b] \to \mathbb{C}$. We define the inner product as

$$\langle f,g\rangle = \int_{a}^{b} f\left(t\right) \overline{g\left(t\right)} dt$$

Solution 67 Similar to the previous example, we verify the four conditions of Definition 63:

(1) We have

$$\langle f, f \rangle = \int_{a}^{b} f(t) \overline{f(t)} dt$$

=
$$\int_{a}^{b} \|f(t)\|_{2}^{2} dt \ge 0,$$

and

$$\langle f, f \rangle = 0 \Leftrightarrow \int_{a}^{b} \|f(t)\|_{2}^{2} dt = 0 \Leftrightarrow \|f(t)\|_{2}^{2} = 0 \Leftrightarrow \|f(t)\|_{2} = 0 \Leftrightarrow f \equiv 0 \text{ on } [a, b].$$

(2) We have

$$\begin{split} \langle f,g\rangle \ &=\ \int_{a}^{b}f\left(t\right)\overline{g\left(t\right)}dt\\ &=\ \int_{a}^{b}\overline{g\left(t\right)}\overline{f\left(t\right)}dt\\ &=\ \overline{\int_{a}^{b}g\left(t\right)\overline{f\left(t\right)}dt}\\ &=\ \overline{\int_{a}^{b}g\left(t\right)\overline{f\left(t\right)}dt}\\ &=\ \overline{\langle g,f\rangle}. \end{split}$$

(3) For the third condition:

$$\langle \lambda f, g \rangle = \int_{a}^{b} \lambda f(t) \overline{g(t)} dt$$

= $\lambda \int_{a}^{b} f(t) \overline{g(t)} dt$
= $\lambda \langle f, g \rangle .$

(4) Lastly,

$$\begin{split} \langle f+g,h\rangle \, &=\, \int_{a}^{b} \left[f+g\right](t)\,\overline{h\left(t\right)}dt \\ &=\, \int_{a}^{b} \left[f\left(t\right)\overline{h\left(t\right)}+g\left(t\right)\overline{h\left(t\right)}\right]dt \\ &=\, \int_{a}^{b} f\left(t\right)\overline{h\left(t\right)}dt + \int_{a}^{b} g\left(t\right)\overline{h\left(t\right)}dt \\ &=\, \langle f,h\rangle + \langle g,h\rangle \,. \end{split}$$

Hence, $(L_2[a,b], \langle \cdot, \cdot \rangle)$ where $\langle f, g \rangle = \int_a^b f(t) \overline{g(t)} dt$ is an inner product space.

3.2 THE COMPLEX CASE

Example 68 Consider the space $X = \ell_2$ with $x = (x_n)_{n \in \mathbb{N}}$ and $y = (y_n)_{n \in \mathbb{N}}$ on \mathbb{C} . We define the inner product as

$$\langle x, y \rangle = \sum_{n=1}^{\infty} x_n \overline{y_n}.$$

To verify this, we have: (1) We have

$$\langle x, x \rangle = \sum_{n=1}^{\infty} x_n \overline{x_n}$$

= $\sum_{n=1}^{\infty} ||x_n||_2^2 \ge 0,$

and

$$\langle x, x \rangle = 0 \Leftrightarrow \sum_{n=1}^{\infty} ||x_n||_2^2 = 0 \Leftrightarrow \forall n \in \mathbb{N} : ||x_n||_2^2 = 0 \Leftrightarrow \forall n \in \mathbb{N} : ||x_n||_2 = 0 \Leftrightarrow \forall n \in \mathbb{N} : x_n = 0 \Leftrightarrow x \equiv 0.$$

(2) For the second condition, we have

$$\langle x, y \rangle = \sum_{n=1}^{\infty} x_n \overline{y_n}$$

$$= \sum_{n=1}^{\infty} \overline{y_n} x_n$$

$$= \overline{\sum_{n=1}^{\infty} y_n \overline{x_n}}$$

$$= \overline{\langle y, x \rangle}.$$

$$(3)$$
 Also,

$$\langle \lambda x, y \rangle = \sum_{n=1}^{\infty} \lambda x_n \overline{y_n}$$

= $\lambda \sum_{n=1}^{\infty} x_n \overline{y_n}$
= $\lambda \langle x, y \rangle .$

(4) Lastly,

$$\langle x + y, z \rangle = \sum_{n=1}^{\infty} [x_n + y_n] \overline{z_n}$$

$$= \sum_{n=1}^{\infty} [x_n \overline{z_n} + y_n \overline{z_n}]$$

$$= \sum_{n=1}^{\infty} x_n \overline{z_n} + \sum_{n=1}^{\infty} y_n \overline{z_n}$$

$$= \langle x, z \rangle + \langle y, z \rangle .$$

Therefore, $(\ell_2, \langle \cdot, \cdot \rangle)$, with $\langle x, y \rangle = \sum_{n=1}^{\infty} x_n \overline{y_n}$, is an inner product space.

3.3 Hilbert Spaces

Definition 69 The inner product space $(X, \langle \cdot, \cdot \rangle)$ is called a Hilbert space if it is complete, i.e. every Cauchy sequence is convergent on X.

Example 70 The inner product spaces $(L_2[a,b], \langle \cdot, \cdot \rangle)$ and $(\ell_2, \langle \cdot, \cdot \rangle)$ (see Examples 56 and 54) are Hilbert spaces.

Remark 71 Since every inner product space is a normed space, every Hilbert space is a Banach space.

3.4 Orthogonality

Definition 72 Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space. The two elements $x, y \in X$ are called orthogonal $(x \perp y)$ if $\langle x, y \rangle = 0$.

Example 73 Consider the space $L_2[0, 2\pi]$, and define the two functions

$$x\left(t\right) = \sin t,$$

and

$$y(t) = \cos t.$$

The inner product of the two functions is given by

$$\langle x, y \rangle = \int_0^{2\pi} x(t) y(t) dt$$

=
$$\int_0^{2\pi} \sin t \cos t dt$$

=
$$\frac{1}{2} \sin^2 x \Big]_0^{2\pi} = 0.$$

Thus, the two functions are orthogonal $(x \perp y)$.

Remark 74 For the inner product space $(X, \langle \cdot, \cdot \rangle)$, * The set $\{x_1, x_2, ...\} \subset X$ is called an **orthogonal** set if

$$\forall n, m \ (n \neq m) : \ \langle x_n, x_m \rangle = 0.$$

* The set $\{x_1, x_2, ...\} \subset X$ is called an **orthonarmal** set if it is orthogonal and

$$\forall n: \langle x_n, x_n \rangle = 1.$$

Example 75 Consider the set

$$\{e_1, e_2, \ldots\} \in \ell_2,$$

where

$$e_1 = (1, 0, 0, 0...),$$

 $e_2 = (0, 1, 0, 0...),$

$$e_3 = (0, 0, 1, 0...),$$

 \vdots
 $e_n = (0, 0, 0, 0, ...0, 1, 0...).$

Therefore, since $\langle e_n, e_m \rangle = 0$ where $n \neq m$ then $\{e_1, e_2, ...\}$ is orthogonal, and since $\langle e_n, e_n \rangle = 1$ then $\{e_1, e_2, ...\}$ is orthonormal.

Lemma 76 Let $x, y \in X$ be orthogonal elements. This is equivalent to

$$||x + y||^{2} = ||x||^{2} + ||y||^{2}.$$

Proof. By definition, since x and y are orthogonal, $\langle x, y \rangle = 0$. Therefore,

$$||x + y||^{2} = \langle x + y, x + y \rangle$$

= $||x||^{2} + ||y||^{2} + 2 \langle x, y \rangle$
= $||x||^{2} + ||y||^{2}$.

3.5 Projections

Definition 77 (Direct Sum) Let Y and Z be subspaces of a vector (linear) space X. We say that X is a direct sum of Y and Z, denoted by $X = Y \oplus Z$, if:

$$\forall x \in X : \exists y \in Y, z \in Z : x = y + z.$$

Example 78 Consider the inner product space $(\mathbb{R}^2, \langle \cdot, \cdot \rangle)$ with $\langle x, y \rangle = x_1y_1 + x_2y_2$ and defined the spaces

$$X = \mathbb{R}^2 = \{ (\alpha, \beta) ; \ \alpha, \beta \in \mathbb{R} \},\$$
$$Y = \mathbb{R} \times \{ 0 \} = \{ (\alpha, 0) ; \ \alpha \in \mathbb{R} \},\$$

and

$$Z=\{0\} imes \mathbb{R}=\{(0,eta)\,;\,\,eta\in\mathbb{R}\}$$
 .

We can see that

$$\mathbb{R}^2 = (\mathbb{R} \times \{0\}) \oplus (\{0\} \times \mathbb{R}),$$

as

$$\forall x = (\alpha, \beta) \in \mathbb{R}^2: \ (\alpha, \beta) = (\alpha, 0) + (0, \beta),$$

where $(\alpha, 0) \in (\mathbb{R} \times \{0\})$ and $(0, \beta) \in (\{0\} \times \mathbb{R})$.

3.5 PROJECTIONS

Definition 79 (Orthoplement) Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space. The orthoplement of $Y \subset X$, denoted by Y^{\perp} , is defined by

$$Y^{\perp} = \{ y \in X : y \perp Y \},\$$

where $y \perp Y$ is equivalent to

$$\forall x \in Y : y \perp x.$$

Example 80 Consider the inner product space $(\mathbb{R}^2, \langle \cdot, \cdot \rangle)$. The orthoplement of $Y = \mathbb{R} \times \{0\}$ is given by

$$Y^{\perp} = \{0\} \times \mathbb{R}.$$

Theorem 81 Let Y be a closed subspace of a Hilbert space H, then

$$H = Y \oplus Y^{\perp},$$

i.e.

$$\forall x \in H, \exists y \in Y, z \in Y^{\perp} : y \perp z \text{ and } x = y + z$$

Definition 82 The element $y \in Y$ is called a projection of $x \in H$. In this case we can define a map

$$P: H \to Y$$
$$x \to Px =$$

y,

in which case P is called a projection operator.

Chapter 4

Operators

Definition 83 An operator A is a mapping form a set X into a set Y, that is $A: X \to Y$.

Example 84 The function f defined by $f(x) = x^2$ maps the set $X = \{1, 2, 5\}$ into $Y = \{1, 4, 25\}$. We write

$$f: X \to Y$$
$$x \to x^2.$$

Example 85 The differential operator $\frac{d}{dt}$ maps $X = \{t^2, \sin t, e^{5t}\}$ into $Y = \{2t, \cot t, 5e^{5t}\}$.

Example 86 Among the many types of integral operators, we have: (1) The Volttera integral operator $Ax(t) = \int_0^t x(s) ds$, which maps $X = \{1, t^2, e^{5t}\}$ into $Y = \{t, \frac{t^3}{3}, \frac{1}{5}(e^{5t} - 1)\}$. (2) The Fredholm integral $Ax(t) = \int_0^1 x(s) ds$, which maps $X = \{1, t^2, e^{5t}\}$ into $Y = \{1, \frac{1}{3}, \frac{1}{5}(e^5 - 1)\}$. (3) The Laplace integral operator $\Delta(f(t)) = \int_0^\infty e^{-st}f(t) dt$ maps $X = \{1, t^2, e^{5t}\}$ into $Y = \{\frac{1}{s}, \frac{1}{s^2}, \frac{1}{s-1}\}$.

Definition 87 An operator $A: X \to Y$ where $X, Y \subset \mathbb{R}$ is called a function.

Definition 88 An operator $A: X \to \mathbb{R}$ is called a functional.

Example 89 The Fredholm integral operator is an example of a functional.

Definition 90 A operator $A : X \to Y$ is said to be linear if X and Y are linear (vector) spaces on \mathbb{R} and

 $\forall \alpha, \beta \in \mathbb{R}, \ \forall x, y \in X : \ A(\alpha x + \beta y) = \alpha Ax + \beta Ay.$

Example 91 The differential operator $\frac{d}{dt}$ is a linear one since

$$\frac{d}{dt}\left(\alpha x + \beta y\right) = \alpha \frac{d}{dt}x + \beta \frac{d}{dt}y.$$

Similarly, the integral operator is linea as

$$\int (\alpha x + \beta y) = \alpha \int x + \beta \int y.$$

Remark 92 The linear operator $A: X \to \mathbb{R}$ is called a linear functional.

Example 93 Consider the functional $A: X \to \mathbb{R}$ such that $Ax = x^2$. We have

$$A (\alpha x + \beta y) = (\alpha x + \beta y)^{2}$$

= $\alpha^{2}x^{2} + \beta^{2}y^{2} + 2\alpha\beta xy$
 $\neq \alpha Ax + \beta Ay$
= $\alpha x^{2} + \beta y^{2}$,

and thus A is not a linear operator.

Example 94 For the functional $Ax(t) = \int_0^1 |x(s)|^2 ds$, we have

$$A(\alpha x + \beta y) = \int_0^1 (\alpha x + \beta y)^2 ds$$

$$\neq \alpha \int_0^1 x^2 ds + \beta^2 \int_0^1 y^2 ds$$

Hence, A is not a linear functional.

Example 95 The Laplace operator is linear since

$$\Delta (\alpha x + \beta y) = \int_0^\infty e^{-st} (\alpha x + \beta y) ds$$

=
$$\int_0^\infty \alpha e^{-st} x ds + \int_0^\infty \beta e^{-st} y ds$$

=
$$\alpha \int_0^\infty e^{-st} x ds + \beta \int_0^\infty e^{-st} y ds$$

=
$$\alpha \Delta (x) + \beta \Delta (y).$$

Definition 96 (Unit operator) The operator $I : X \to X$ is called a unit operator if Ix = x.

Example 97 The operator
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 is a unit operator from \mathbb{R}^2 to \mathbb{R}^2
as
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}.$$

Definition 98 (Inverse operator) The operator $B : Y \to X$ is called a left or right inverse of the operator $A : X \to Y$ if BA = I or AB = I, respectively.

If B is the left and right inverse simultaneously, it is called the inverse, denoted by A^{-1} , i.e.

$$BA = AB = I.$$

Example 99 Let $A := \frac{d}{dt}$ and $B := \int_0^t$. According to the fundamental theorem of calculus, we have

$$\frac{d}{dt}\int_{0}^{t}f\left(s\right)ds=f\left(t\right),$$

and

$$\int_0^t \frac{d}{ds} f(s) \, ds = f(t) - f(0) \, .$$

Note that A is the left inverse of B but A is not the right inverse of B. Similarly, B is the right inverse of A but B is not the left inverse of A.

Lemma 100 There exists at most one inverse to any operator.

Proof. Let $A: X \to Y$. The proof is separated into two parts:

1) If no inverse exists, then we have nothing to prove.

2) If $B, C: Y \to X$ are two inverses of A, then AC = I and BA = I, which leads to

$$B = BI$$
$$= BAC$$
$$= IC$$
$$= C.$$

Definition 101 Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be two normed spaces. The operator

$$A: X \to Y$$

is said to be: **Bounded**: If there exists C > 0 such that $\forall x \in X$:

$$\|Ax\|_Y \le C \|x\|_X.$$

Continuous: If $\forall x, y \in X$:

$$\lim_{\|x-y\|_X \to 0} \|Ax - Ay\|_Y = 0.$$

Example 102 Define the operator $A : C[0,1] \rightarrow C[0,1]$ as

$$Ax = \int_0^t x(s) \, ds.$$

38

We have

$$\begin{split} \|Ax\| &= \sup_{t \in [0,1]} |Ax(t)| \\ &= \sup_{t \in [0,1]} \left| \int_0^t x(s) \, ds \right| \\ &\leq \sup_{t \in [0,1]} \int_0^t |x(s)| \, ds \\ &\leq \sup_{t \in [0,1]} \int_0^1 \|x\| \, ds \\ &= \|x\| \sup_{t \in [0,1]} \int_0^t ds \\ &= \|x\| \sup_{t \in [0,1]} t \\ &= \|x\| . \end{split}$$

Thus,

 $\left\|Ax\right\| \le \left\|x\right\|,$

which shows that A is a bounded operator.

Example 103 Define $A: C[0,1] \to \mathbb{R}$

$$Ax = \int_0^1 x(s) \, ds$$

$$\|Ax\| = |Ax|$$

= $\left| \int_0^1 x(s) \, ds \right|$
$$\leq \int_0^1 |x(s)| \, ds$$

$$\leq \int_0^1 \|x\| \, ds$$

= $\|x\|$

Then A is bounded operator.

Example 104 Define $T : X \to \mathbb{R}$ such that Tx = ||x||. We want to show that T is a bounded operator. We have

$$||Tx|| = |Tx| = ||x|| = ||x||.$$

Then, T is a bounded operator. Also, $\forall x, y \in X$:

$$||Tx - Ty|| = |Tx - Ty| = |||x|| - ||y|| \leq ||x - y||,$$

leading to

$$\lim_{\|x-y\| \to 0} \|Tx - Ty\| = 0,$$

which means that T is continuous.

Example 105 Let us show that the differential operator is not bounded. Consider the family of continuous functions on [0, 1]

$$\{x_n\} = \{t^n\}$$
 $n = 1, 2, 3...$

First, note that $\forall n \in \mathbb{N}$, the norm of x_n is defined by

$$||x_n|| = \sup_{t \in [0,1]} |t^n| = 1.$$

 $We\ have$

$$\left\| \frac{d}{dx} x_n \right\| = \left\| \frac{d}{dx} t^n \right\|$$
$$= \left\| n t^{n-1} \right\|$$
$$= n \left\| t^{n-1} \right\|$$
$$= n.$$

Note, as $n \to \infty$:

$$||x_n|| \to 1$$

but

$$\left\|\frac{d}{dx}x_n\right\| = n \to \infty.$$

Therefore, there does not exist C > 0 such that $\left\| \frac{d}{dx} x_n \right\| \le C \|x_n\|$.

Theorem 106 A linear operator is bounded if and only if it is continuous.

Proof. If T is a linear operator, then

$$T(0) = T(x - x)$$

= $Tx - Tx$
= 0.

Now, let us divide the proof of the equivalence into two main parts: First, if T is bounded then $\forall x, y \in X : \exists C > 0$. We have

$$||Tx - Ty|| = ||T(x - y)|| \le ||x - y||,$$

and thus

$$\lim_{\|x-y\| \to 0} \|Tx - Ty\| = 0.$$

Hence, T is continuous. This proves the forward implication.

Second, assume T is not bounded. It follows that there exists a sequence $\{x_n\}$ such that

$$\forall n \in \mathbb{N} : n \|x_n\| \le \|Tx_n\|.$$

Define a new sequence $\{x_n^*\}$ as

$$x_n^* = \frac{x_n}{n \|x_n\|},$$

for which

$$\begin{aligned} |x_n^* - 0|| &= ||x_n^*|| \\ &= \left\| \frac{x_n}{n \, ||x_n||} \right\| \\ &= \frac{||x_n||}{n \, ||x_n||} \\ &= \frac{1}{n}, \end{aligned}$$

and

$$||Tx_n^* - T0|| = ||Tx_n^*|| = \left| \left| T \frac{x_n}{n \, ||x_n||} \right| \right| = \frac{||Tx_n||}{n \, ||x_n||} \ge 1.$$

Hence,

$$\lim_{n \to \infty} \|x_n^* - 0\| = 0,$$

but

$$\lim_{n \to \infty} \|Tx_n^* - T0\| \ge 1,$$

which implies that T is not continuous.

Remark 107 The differential operator is linear unbounded, and thus it is not continuous.

Example 108 Define the operator $T : \ell_{\infty} \to \ell_{\infty}$ by Tx = z where $x = (x_n), z = (z_n), and$

$$z_n = \frac{\sum_{i=1}^n x_i}{n}.$$

Let us show that T is linear, bounded and continuous. First, we have

$$T (\alpha x + \beta y) = \left(\alpha x_1 + \beta y_1, \frac{\alpha (x_1 + x_2) + \beta (y_1 + y_2)}{2}, \ldots\right)$$
$$= \left(\alpha x_1, \frac{\alpha (x_1 + x_2)}{2}, \ldots\right) + \left(\beta y_1, \frac{\beta (y_1 + y_2)}{2}, \ldots\right)$$
$$= \alpha \left(x_1, \frac{x_1 + x_2}{2}, \ldots\right) + \beta \left(y_1, \frac{y_1 + y_2}{2}, \ldots\right)$$
$$= \alpha T (x) + \beta T (y),$$

which implies that T is a linear operator. Second,

$$||Tx||_{\ell_{\infty}} = \sup\left\{|x_1|, \frac{|x_1+x_2|}{2}, \ldots\right\}$$

It follows that $\forall n \in \mathbb{N}$:

$$\left|\frac{\sum_{i=1}^{n} x_i}{n}\right| \leq \frac{\sum_{i=1}^{n} |x_i|}{n}$$
$$\leq \frac{\sum_{i=1}^{n} \|x\|}{n} = \|x\|$$

and thus

$$\left\|Tx\right\|_{\ell_{\infty}} \le \left\|x\right\|,$$

which means that T is bounded. Now, since T is linear and bounded, then it is continuous.

4.1 Fundamontal Theorems

Theorem 109 (Riezs repesentation theorem) For every bounded linear functional f defined on a Hilbert space H, i.e. $f : H \to \mathbb{R}$, there exists a unique $z \in H$ such that

$$f(x) = \langle x, z \rangle, \ \forall x \in H.$$
 (4.1)

Remark 110 The functional f defined by (4.1) is bounded and linear since

$$f(\alpha x + \beta y) = \langle \alpha x + \beta y, z \rangle$$

= $\alpha \langle x, z \rangle + \beta \langle y, z \rangle$
= $\alpha f(x) + \beta f(y),$

and

$$||f(x)|| = |f(x)| = |\langle x, z \rangle| \le ||x|| ||z||,$$

leadings to

$$||f(x)|| \le c ||x||; c = ||z||.$$

Hence, as f is bounded and linear, it is continuous.

Theorem 111 (Hahn-Banach theorem) Assume G is a subspace of the normed space E. For every linear functional f on G, there exists a linear functional F defined on E such that

$$f(x) = F(x), \ \forall x \in G.$$

Remark 112 The functional F is called an extention of f.

Definition 113 (Dual or conjugate space) The dual space of the normed space E consists of all bounded linear functionals defined on E

$$f: E \to \mathbb{R}.$$

This space is denoted by E^* .

Example 114 For E = C[0,1] and $||x|| = \sup |x(t)|$, we define $f : C[0,1] \rightarrow \mathbb{R}$ by

$$f(x) = \int_0^1 x(t) dt.$$

Since f is a linear and bounded operator, then $f \in C^*[0,1]$.

Remark 115 If E is a Hilbert space, then all functionals forming the dual of the Hilbert space are of the form:

$$f \in H^*, \ \forall x \in H, \ f(x) = \langle x, z \rangle, \ z \in H.$$

Theorem 116 The dual space E^* with the norm

$$||f||_{E^*} = \sup_{x \neq 0} \frac{|f(x)|_{\mathbb{R}}}{||x||_E}$$

is a Banach space.

Proposition 117 For every $f \in E^*$, we have

$$|f(x)| \le ||f|| \cdot ||x||, \ \forall x \in E.$$
 (*)

Proof. We consider two separate cases:

The first is where x = 0, in which case (??) is true as f(0) = 0 and ||0|| = 0.

The second case is where $x \neq 0$, which yields

$$\frac{|f(x)|}{\|x\|_{E}} \le \sup_{x \neq 0} \frac{|f(x)|}{\|x\|_{E}} = \|f\|_{E^{*}}.$$

Therefore,

$$|f(x)| \le ||f||_{E^*} \cdot ||x||_E$$
.

Theorem 118 The dual space of $L_p[a, b]$ is isomorphic to $L_q[a, b]$ with $\frac{1}{p} + \frac{1}{q} = 1$ and $p \in [1, \infty)$ in the following sence:

For each $f \in L_p^*[a, b]$, there exists a corresponding $g \in L_q[a, b]$ such that

$$f(x) = \int_{a}^{b} g(t) x(t) dt.$$

We write

$$L_p^*[a,b] \simeq L_q[a,b].$$

Example 119 The following examples follow from the previous theorem

$$L_{2}^{*}[a,b] \simeq L_{2}[a,b],$$

$$L_{2}^{**}[a,b] \simeq L_{2}[a,b],$$

$$L_{3}^{*}[a,b] \simeq L_{\frac{3}{2}}[a,b] \left(\frac{1}{3} + \frac{1}{3/2} = 1\right),$$

$$L_{1}^{*}[a,b] \simeq L_{\infty}[a,b] \left(\frac{1}{1} + \frac{1}{\infty} = 1\right).$$

Example 120 Considering that $p \in [1, +\infty)$ and $\frac{1}{q} + \frac{1}{p} = 1$, we have

$$\ell_p^* \simeq \ell_q,$$

and

$$\ell_5^* \simeq \ell_{\frac{5}{4}} \quad \left(\frac{1}{5} + \frac{1}{5/4} = 1\right).$$

Exercise 121 Show that $C_0^* \simeq \ell_1$ and $\ell_\infty^* \subset \ell_1$.

Definition 122 The normed space E is said to be reflexive if the second dual E^{**} is isomorphic to E; that is

$$E^{**} = (E^*)^* \simeq E.$$

Lemma 123 The following statements hold: (1) The spaces $L_p[a, b]$ and ℓ_p for $p \in (1, +\infty)$ are reflexive, i.e.

$$L_p^{**}\left[a,b\right] \simeq L_p\left[a,b\right],$$

and

$$\ell_p^{**} \simeq \ell_p.$$

(2) All Hilbert spaces are reflexive.

(3) The space C_0 is not reflexive as

$$C_0^{**} = (C_0^*)^*$$

= $(\ell_1)^* \simeq \ell_\infty.$

Definition 124 (Weak and Strong Convergence) Let $\{x_n\}$ be a sequence in the normed space $(E, \|\cdot\|)$:

(1) We say that $\{x_n\}$ converges **strongly** to x_0 if

$$\lim_{n \to \infty} \|x_n - x_0\|_E = 0.$$

We write $x_n \to x_0$.

(2) We say that $\{x_n\}$ convergs **weakly** to x_0 if for every $f \in E^*$,

$$\lim_{n \to \infty} \left| f\left(x_n\right) - f\left(x_0\right) \right| = 0.$$

We write $x_n \rightharpoonup x_0$.

Remark 125 Strong convergence implies weak convergence. Consider the following estimate

$$|f(x_n) - f(x_0)| = |f(x_n - x_0)| \le ||f|| \cdot ||x_n - x_0||.$$

If the right hand side goes to zero, i.e.

$$\lim_{n \to \infty} \|x_n - x_0\|_E = 0,$$

then the right hand side does as well

$$\lim_{n \to \infty} \left| f\left(x_n\right) - f\left(x_0\right) \right| = 0.$$

Remark 126 There are weakly converging sequences that do not converge strongly.

Example 127 Consider the Hilbert space ℓ_2 and the sequence $\{x_n\}$ where

$$\begin{aligned} x_1 &= (1, 0, 0, 0, \dots), \\ x_2 &= (0, 1, 0, 0, \dots), \\ x_3 &= (0, 0, 1, 0, \dots), \\ &\vdots \\ x_n &= (0, 0, \dots, 0, 1, 0, \dots). \end{aligned}$$

Note that

$$\lim_{n \to \infty} x_n = (0, 0, 0, 0, \dots) =: x_0,$$

which yields

$$||x_n - x_0|| = ||(0, 0, ..., 0, 1, 0,)||$$

= $||x_n||$
= 1.

Therefore,

$$\lim_{n \to \infty} \|x_n - 0\| = 1 \neq 0.$$

Hence, this sequence is not strongly convergent. However, since ℓ_2 is a Hilbert space, then for any $f \in \ell_2$, there exists $a = \{a_n\} \in \ell_2$ such that $f(x) = \langle x, a \rangle$, $x \in \ell_2$, then

$$f(x_n) = \langle x_n, a \rangle$$
$$= a_n.$$

Since

$$a = \{a_n\} \in \ell_2 \sum_{n=1}^{\infty} a_n^2 < \infty,$$

we have

$$\lim_{n \to \infty} |a_n| = 0.$$

This along with the fact that

$$|f(x_n) - f(0)| = |f(x_n)|$$

= $|a_n|$,

leads to

$$\lim_{n \to \infty} \left| f\left(x_n\right) - f\left(0\right) \right| = 0,$$

then

$$x_n \rightharpoonup x_0 = 0.$$

Definition 128 (Adjoint Operator) Let $(X, \langle \cdot, \cdot \rangle)$ be a uninner product space. The adjoint operator T^* of the operator $T : X \to X$ satisfies

$$\forall x, y \in X : \langle Tx, y \rangle = \langle x, T^*y \rangle.$$

Example 129 Define the operator $T: L_2[0,\infty] \to L_2[0,\infty]$ by

$$Tx(t) = x\left(\frac{t}{5}\right)t \in [0,\infty).$$

We want to show that T^* can be defined as

$$T^{*}x\left(t\right) = 5x\left(5t\right).$$

 $We\ have$

$$\langle Tx, y \rangle = \int_0^\infty Tx(t) y(t) dt = \int_0^\infty x\left(\frac{t}{5}\right) y(t) dt,$$
 (4.2)

and

$$\langle x, T^*y \rangle = \int_0^\infty x(t) T^*y(t) dt = \int_0^\infty x(t) \cdot 5x(5t) dt.$$

We can integrate by substitution. Let

$$\begin{cases} u = 5t, \quad du = 5dt \\ t = 0 \to u = 0 \\ t = \infty \to u = \infty. \end{cases}$$

Substituting yields

$$\langle x, T^*y \rangle = \int_0^\infty x\left(\frac{u}{5}\right) y\left(u\right) du.$$
 (4.3)

From (4.2) and (4.3), we obtain

$$\langle Tx, y \rangle = \langle x, T^*y \rangle.$$

Lemma 130 If T^* is the adjoint operator of T, then (1) $\forall x, y \in X : \langle T^*x, y \rangle = \langle x, Ty \rangle$, (2) $T^{**} = T$, and (3) $\forall \alpha \in \mathbb{R} : (\alpha T)^* = \alpha T^*$.

Proof. First, for the field of real numbers \mathbb{R} , we have: (1) $\forall x, y \in X$:

Second, for the field of complex number \mathbb{C} , we have: (1) We have

(2) For the second property, we have

$$\langle T^{**}x, y \rangle = \langle x, T^*y \rangle$$

= $\langle Tx, y \rangle$,

leading to

$$\forall x, y \in X : \langle T^{**}x, y \rangle = \langle Tx, y \rangle.$$

Thus,

$$T^{**} = T.$$

(3) For every $\alpha \in \mathbb{R}$, we have

$$\langle (\alpha T)^* x, y \rangle = \langle x, \alpha T y \rangle$$

= $\alpha \langle x, T y \rangle$
= $\alpha \langle T^* x, y \rangle$
= $\langle \alpha T^* x, y \rangle .$

Therefore,

$$(\alpha T)^* = \alpha T^*.$$

Note that if $\alpha \in \mathbb{C}$,

$$(\alpha T)^* = \overline{\alpha} T^*.$$

Definition 131 An operator T is said to be **self-adjoint** if $T = T^*$; that is $\forall x, y \in X : \langle Tx, y \rangle = \langle x, Ty \rangle$.

Definition 132 An operator T is said to be **unitary** if $T^* = T^{-1}$; that is $\forall x, y \in X : \langle Tx, y \rangle = \langle x, T^{-1}y \rangle$.

Example 133 Let $T: L_2[a, b] \rightarrow L_2[a, b]$ where

$$Tx(t) = tx(t), t \in [a, b].$$

We will prove that T is self-adjoint. We have

$$\langle Tx, y \rangle = \int_{a}^{b} Tx(t) y(t) dt$$

=
$$\int_{a}^{b} tx(t) y(t) dt,$$
 (4.4)

and

$$\langle x, Ty \rangle = \int_{a}^{b} x(t) Ty(t) dt$$

=
$$\int_{a}^{b} x(t) ty(t) dt.$$
 (4.5)

From (4.4) and (4.5), we obtain that T is self-adjoint.

Example 134 Define the operator $T: L_2[0,1] \rightarrow L_2[0,1]$ by

$$Tx\left(t\right) = x\left(1-t\right)$$

Observe that

$$\langle Tx, y \rangle = \int_0^1 Tx(t) y(t) dt$$

=
$$\int_0^1 x(1-t) y(t) dt$$

We use the following change of variable

$$\begin{cases} u = 1 - t \rightarrow du = -dt \\ t = 0 \rightarrow u = 1, t = 1 \rightarrow u = 0. \end{cases}$$

Substitution yields

$$\langle Tx, y \rangle = -\int_{1}^{0} x(u) y(1-u) du$$

$$= \int_{0}^{1} x(u) y(1-u) du$$

$$= \int_{0}^{1} x(u) Ty(u) du$$

$$= \langle x, Ty \rangle.$$

Hence, T is self-adjoint.

Lemma 135 Let T and S be two operators defined on the inner product space $(X, \langle \cdot, \cdot \rangle)$, then (1) TT^* is self-adjoint, and (2) $(ST)^* = T^*S^*$.

Proof. For the first property, we have

$$\left\langle TT^*x, y \right\rangle = \left\langle T^*x, T^*y \right\rangle,$$

leading to

$$\langle x, TT^*y \rangle = \langle T^*x, T^*y \rangle,$$

which implies that TT^* is self-adjoint.

For the second property,

$$\langle (ST) \, x, y \rangle = \langle Tx, S^*y \rangle \\ = \langle x, T^*S^*y \rangle$$

٠

This produces

$$\langle (ST) x, y \rangle = \langle x, (ST)^* y \rangle,$$

which means that $(ST)^* = T^*S^*$.

Lemma 136 If T is a unitary operator then: (1) It preserves the length of the element x, i.e. ||Tx|| = ||x|| .. (2) It preserves of the angle, i.e. $\langle Tx, Ty \rangle = \langle x, y \rangle$. **Proof.** For the length, we have

$$||Tx||^{2} = \langle Tx, Ty \rangle$$

= $\langle x, T^{-1}Tx \rangle$
= $\langle x, x \rangle$
= $||x||^{2}$,

which leads to property (1).

For the angle, it is easy to see that

$$\langle Tx, Ty \rangle = \langle x, T^{-1}Ty \rangle$$

= $\langle x, y \rangle$.

View publication stats