
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/311858080

Functiona	Analysis_v5

Data	·	April	2016

DOI:	10.13140/RG.2.2.30261.68325

CITATIONS

0

READS

14

2	authors:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Polynomial	Matrices	for	Signal	Processing	and	Communications	View	project

Generalized	Lengyel-Epstein	System	View	project

S.	Abdelmalek

Université	de	Tébessa

24	PUBLICATIONS			93	CITATIONS			

SEE	PROFILE

Samir	Bendoukha

Taibah	University

19	PUBLICATIONS			9	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	S.	Abdelmalek	on	23	December	2016.

The	user	has	requested	enhancement	of	the	downloaded	file.



Summary of the Course: Functional Analysis
(Math�412)

Salem Abdelmalek & Samir Bendoukha1

May 8, 2016 Version 1

1Taibah University, Yanbu Branch



Contents

Preface ix

1 Metric Spases 1
1.1 Convergence of Sequences . . . . . . . . . . . . . . . . . . . . 4
1.2 Cauchy Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Complete Metric Spaces . . . . . . . . . . . . . . . . . . . . . 7
1.4 Some Applications . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Normed Space 11
2.1 Convergent Sequences . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Inner Product Spaces 19
3.1 The Real Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 The Complex Case . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Operators 35
4.1 Fundamontal Theorems . . . . . . . . . . . . . . . . . . . . . . 43

v



Preface

...................

ix





Chapter 1

Metric Spases

De�nition 1 Let X be a non-empty set (X 6= ;) and d a real-valued function
de�ned on X �X

d : X �X ! R

(a; b)! d (a; b)

such that for a; b 2 X:
(i) d (a; b) � 0 and d (a; b) = 0 if and only if a = b.
(ii) d (a; b) = d (b; a).
(iii) d (a; c) � d (a; b) + d (b; c) (the triangle inequality) for a; b and c in X.
Then, d is said to be a metric on X, (X; d) is called a metric space, and
d (a; b) is referred to as the distance between a and b.

Example 2 The function

d : R� R! R

(a; b)! ja� bj

is a metric on the set R since
(i) d (a; b) = ja� bj � 0 for all a; b 2 R, and d (a; b) = 0 , ja� bj = 0 ,
a� b = 0, a = b.
(ii) d (a; b) = ja� bj = jb� aj = d (b; a), and
(iii) d (a; c) = ja� cj = ja� b+ b� cj � ja� bj+ jb� cj = d (a; b) + d (b; c) :
(this is deduced from the inequality jx+ yj � jxj+ jyj).
The distance d considered here is known as the Euclidean metric on R.
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2 CHAPTER 1 METRIC SPASES

Example 3 Similar to the previous example, we can show that the function

d : R2 � R2 ! R

((a1; a2) ; (b1; b2))!
q
(a1 � b1)2 + (a2 � b2)2

is a metric on R2. It is called the Euclidean metric on R2.

Example 4 Let X be a non-empty set and d the function from X �X into
R de�ned by

d (a; b) =

8<: 0 if a = b1 if a 6= b:
Then, d is a metric on X and is called the discret metic.

Example 5 We can de�ne another metric on R2 by choosing

d� ((a1; a2) ; (b1; b2)) = max fja1 � b1j ; ja2 � b2jg :

This form of distance can be generalised to n-dimensions, i.e. Rn as

d� (A;B) = max
i=1;n

fjai � bijg ;

where A = (a1; a2; :::; an) and B = (b1; b2; :::; bn).

Example 6 Yet another metric on R2 is given by

d1 ((a1; a2) ; (b1; b2)) = ja1 � b1j+ ja2 � b2j ;

which can also be generalized to Rn as

d� (A;B) =
nX
i=1

jai � bij ;

where A = (a1; a2; :::; an) and B = (b1; b2; :::; bn).

Example 7 We can also de�ne what is known as the Holder metric on Rn
by

dp (A;B) =
p

vuut nX
i=1

jai � bijp;

with p 2 [p;1).
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Many important examples of metric spaces are "function spaces". For
these, the set X on which we put a metric is a set of functions. The following
are some examples concerning function spaces.

Example 8 Let C [0; 1] denote the set of continuous functions from [0; 1]
into R. The following metric may be de�ned on this set

d (f; g) =

Z 1

0

jf (x)� g (x)j dx;

where f and g are in C [0; 1].

Example 9 For the same set C [0; 1] de�ned in the previous example, we
de�ne another metric as follows

d� (f; g) = sup
x2[0;1]

jf (x)� g (x)j :

De�nition 10 Let (X; d) be a metric space and r any positive real number.
The open ball about a 2 X of radius r is the set

Br (a) = fx 2 Xj d (x; a) < rg :

Example 11 In the metrix space form by R and the Euclidean metric, Br (a)
is the open interval (a� r; a+ r).

Example 12 In R2 with the Euclidean metric, Br (a) becomes the open disc
with center a and radius r.

Example 13 In R2 with the metric d�given by

d� ((a1; a2) ; (b1; b2)) = max fja1 � b1j ; ja2 � b2jg ;

the open ball B1 ((0; 0)) is the square plate depicted in Figure???.

Example 14 In R2 with the metric d1 given by

d1 ((a1; a2) ; (b1; b2)) = ja1 � b1j+ ja2 � b2j ;

the open ball B1 ((0; 0)) is the diamond shape depicted in Figure???.
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Corollary 15 Let (X; d) be a metric space and B1 and B2 open balls in
(X; d). Then, B1 \B2 is a union of open balls in (X; d).

Proposition 16 Let (X; d) be a metric space. The collection of open balls
in (X; d) is a basis for a topology � on X.

Example 17 If d is the Euclidean metric on R, then a basis for the topology
� induced by the metric d is the set of all open balls de�ned by

B� (a) = (a� �; a+ �) :

De�nition 18 Metrics on a set X are said to be equivalent if they induce
the same topology on X.

Example 19 The metrics d; d�; d1 de�ned on R2 in examples 3, 5, and 6,
respectively, are equivalent.

Proposition 20 Let (X; d) be a metric space and � the topology induced
on X by the metric d. A sub set U of X is open in (X; �) if and only if
8a 2 U; 9� > 0 such that the open ball B� (a) � U:

Proposition 21 If (X; d) is a metric space and � is the topology induced on
X by d, then (X; �) is a Hausdor¤ space (T2�space) de�ned as

8a; b 2 X; a 6= b; 9U; V 2 � such that a 2 U; b 2 V; and U \ V = ;: (1.1)

Proof. Since a; b 2 X; a 6= b, then d (a; b) = � > 0. We can de�ne the two
open balls U = B �

2
(a) and V = B �

2
(b), which satisfy (1.1).

1.1 Convergence of Sequences

De�nition 22 Let (X; d) be a metric space and (xn)n2N a sequence of points
in X: The sequence is said to converge to x 2 X if

lim
n!1

d (xn; x) = 0, 8� > 0;9n0 2 N;8n 2 N : n � n0 ) d (xn; x) < �:
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Example 23 consider the metric space (R; j�j). The sequence xn = 1 + 1
n

converges to x = 1. First, we have

d (xn; x) =

����1 + 1

n
� 1
����

=
1

n
:

Then, the limist of the distance as n approaches in�nity is given by

lim
n!1

d (xn; x) = lim
n!1

1

n
= 0:

Therefore, (xn) is convergent towards 1 in (R; j�j).

Proposition 24 Any sequence (xn)n2N de�ned in a metric space (X; d) is
at most convergent towards a unique point, i.e.8<: lim

n!1
d (xn; x) = 0

lim
n!1

d (xn; y) = 0
) x = y: (1.2)

Proof. The aim is to prove (1.2). Assuming that lim
n!1

d (xn; x) = 0 leads to

8� > 0;9n0 2 N;8n 2 N : n � n0 ) d (xn; x) < �; (1.3)

and similarly lim
n!1

d (xn; y) = 0 yields

8� > 0;9n1 2 N;8n 2 N : n � n1 ) d (xn; y) < �: (1.4)

Hence, for any n � max fn0; n1g, (1.3) and (1.4) imply that d (xn; x) < � and
d (xn; y) < �, which can be rewritten as

d (xn; x) + d (xn; y) < 2�:

Futher simpli�cation yields

d (x; y) � d (x; xn) + d (xn; y) < 2�:

Therefore,
8� > 0 : d (x; y) < 2�) d (x; y) = 0) x = y:
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Proposition 25 Let (X; d) be a metric space. A subset A of X is said to
be closed in (X; d) i¤ every convergent sequence of points in A converges to
a point in A.

Example 26 The subset A =
�
1; 1

2
; 1
3
; :::
	
of R is not closed in (R; j�j) since

8n 2 N : 1
n
2 A; lim

n!1
1
n
= 0 =2 A.

Example 27 The subset Q of R is not closed in (R; j�j) as the sequence�
1 + 1

n

�n 2 Q converges towards lim
n!1

�
1 + 1

n

�n
= e =2 Q.

Proposition 28 Let (X; d) and (Y; d0) be metric spaces and f a mapping of
X into Y , then f is continuous at x0 2 X i¤ lim

d(x;x0)!0
d0 (f (x) ; f (x0)) = 0,

i.e.
8� > 0;9� > 0;8x : d (x; x0) < � ) d0 (f (x) ; f (x0)) < �:

Example 29 Consider the mapping

f (R; j�j)! (R; j�j)

x! f (x) ;

which is continuous at x0 i¤ lim
jx�x0j!0

jf (x)� f (x0)j = 0, which is equivalent

to lim
x!x0

f (x) = f (x0), i.e.

8� > 0;9� > 0;8x : jx� x0j < � ) jf (x)� f (x0)j < �:

Exercise 30 Let X = R and d (x; y) =

8<: 1;x 6= y0;x = y
. Is the sequence

�
1
n

�
convergent? Justify your answer.

1.2 Cauchy Sequences

De�nition 31 (Cauchy sequence) Let (X; d) be a metric space. The se-
quence fxng � X is called a Cauchy sequence if

lim
n;m!1

d (xn; xm) = 0;

which can be written as

8� > 0;9n0 2 N;8n;m 2 N : n;m � n0 ) d (xn; xm) < �:
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Proposition 32 In (R; j�j), the sequence is Cauchy sequence i¤ it is a con-
vergent.

Example 33 Consider the metric space (X; d), where X = N and d (n;m) =�� 1
n
� 1

m

��. We want to show that the sequence fng is a Cauchy sequence but
that it is not convergent. We have

d (xn; xm) = d (n;m)

=

���� 1n � 1

m

���� � 1

n
+
1

m
:

Taking the limist as n and m approch in�nity yields

0 � lim
n;m!1

d (xn; xm) � lim
n;m!1

�
1

n
+
1

m

�
= 0:

Therefore,
lim

n;m!1
d (xn; xm) = 0;

which proves that fng is a Cauchy sequence. However, assume that the se-
quence converge towards a value a 2 N, i.e.

lim
n!1

d (xn; a) = lim
n!1

d (n; a)

=
1

a
6= 0;

which is a contradiction. Hence, the sequence is divergent.

1.3 Complete Metric Spaces

De�nition 34 A metric space is called complete if every Cauchy sequence
de�ned in it converges to an element of the space.

Example 35 The metric space (X; d) with X = N and d (n;m) =
�� 1
n
� 1

m

��
is not complete.

Example 36 The metric space ((0; 1] ; j�j) is not complete since, for in-
stance, the sequence

�
1
n

	
is a Cauchy sequence that converges to the point

0 =2 (0; 1].

Example 37 The metric space (R; j�j) is complete following Proposition 32.
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1.4 Some Applications

Are the following applications valid distances (metric)?

� X = R; d (x; y) = jx2 � y2j. (not metric)

� X =
�
0; �

2

�
; d (x; y) = sin jx� yj. (metric)

� X =
�
0; �

2

�
; d (x; y) = cos jx� yj. (not metric)

� X = N; d (n;m) = jn�mj. (metric)

� X = N; d (n;m) =
�� 1
n
� 1

m

��. (metric)
� X = N; d (n;m) =

8<: 1;n 6= m0;n = m
. (metric)

� X = C [a; b] is the space of continuous function on [a; b] and d (f; g) =8<: 1; f 6= g0; f = g
. (metric)

� X = C0 is the space of all sequences that converge to 0 and d (x; y) =
sup
n2N

jxn � ynj such that x = (xn) and y = (yn). (metric)

� X = `p : p 2 [1;1) is the space of all sequences (xn) such that
1P
n=1

jxnjp <1 (series is convergent) and dp (x; y) =
� 1P
n=1

jxn � ynjp
� 1

p

. (metric)

� X = `1 is the space of all bounded sequences and d1 (x; y) = sup
n2N

jxn � ynj

such that x = (xn) and y = (yn). (metrix)
Also prove that

`1 � `2 � :::: � C0 � `1

and
d1 (x; y) = lim

n!1
dp (x; y) :
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� X = Lp [a; b] is the space of p-integrable functions on [a; b], i.e.
R b
a
jf (x)jp dx <

1, and dp (f; g) =
�R b

a
jf (x)jp dx

� 1
p
. (metric)

If f (x) = 1
x
; g (x) = 2

x
2 L1 [1; 4], �nd the distance d1

�
1
x
; 2
x

�
.

� X = L1 [a; b] is the space of essentially bounded functions on [a; b] and
d1 (f; g) = esssup

x2[a;b]
jf (x)� g (x)j. (metric)

Also prove that

L1 [a; b] � :::: � L2 [a; b] � L1 [a; b] :

� Let (X; d) be a metric space. Prove that d0 (x; y) = d(x;y)
1+d(x;y)

is also a
distance.





Chapter 2

Normed Space

De�nition 38 Let X be a linear space. The function

k�k : X ! R

x! kxk

is said to be a norm if it satis�es the conditions
(1) 8x 2 X : kxk � 0 and kxk = 0, x = 0:
(2) 8x 2 X;8� 2 R or C : k�xk = j�j kxk :
(3) 8x; y 2 X : kx+ yk � kxk+ kyk :
In this case (X; k�k) is called a normed space.

Remark 39 The second condition implies

k�xk = kxk :

Example 40 Let X = R and kxk = jxj, then (R; j�j) is a normed space since
(1) 8x 2 R : jxj � 0 and jxj = 0, x = 0:
(2) 8x 2 R;8� 2 R : j�xj = j�j jxj :
(3) 8x; y 2 R : jx+ yj � jxj+ jyj :

Example 41 Let X = C [a; b] and kfk = sup
t2[a;b]

jf (t)j, then (X; k�k) is a

normed space as shown below:
(1) 8f 2 X : kfk = sup

t2[a;b]
jf (t)j � 0 and

11



12 CHAPTER 2 NORMED SPACE

kfk = 0, sup
t2[a;b]

jf (t)j = 0

, 8t 2 [a; b] : jf (t)j = 0
, 8t 2 [a; b] : f (t) = 0
, f � 0:

(2) 8f 2 X; 8� 2 R we have

k�fk = sup
t2[a;b]

j�f (t)j

= sup
t2[a;b]

j�j jf (t)j

= j�j sup
t2[a;b]

jf (t)j

= j�j kfk :

(3) 8f; g 2 X we have

kf + gk = sup
t2[a;b]

j(f + g) (t)j

= sup
t2[a;b]

jf (t) + g (t)j

� sup
t2[a;b]

jf (t)j+ sup
t2[a;b]

jg (t)j

= kfk+ kgk :

For instance, consider the function

f (t) = t� cos t 2 C [0; �] :

The de�ned norm is given by

kfk = sup
t2[0;�]

jt� cos tj :
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In order to calculate the supremum, �rst, take the derivative f
0
(t) = 1 �

sin x > 0, meaning that f is increasing. Hence,

kfk = sup
t2[0;�]

jt� cos tj

= � � cos �
= � + 1:

Proposition 42 Let (X; k�k) be a normed space, then

8x; y 2 X : jkxk � kykj � kx� yk :

Proof. First, we know that

kxk = kx� y + yk � kx� yk+ kyk ;

which can be rewritten as

kxk � kyk � kx� yk : (2.1)

Similarly, we have

kyk = ky � x+ xk � ky � xk+ kxk ;

yielding
�kx� yk � kxk � kyk (2.2)

From (2.1) and (2.2) we get

�kx� yk � kxk � kyk � kx� yk ;

which simpli�es to
jkxk � kykj � kx� yk :

Example 43 Consider the metric space formed by X = Lp [a; b] and kxk =�R b
a
jx (t)jp dx

� 1
p
, then (Lp [a; b] ; k�k) is a normed space as proven below:
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(1) 8x 2 X : kxk =
�R b

a
jx (t)jp dx

� 1
p � 0, and

kxk = 0,
�Z b

a

jx (t)jp dx
� 1

p

= 0

,
Z b

a

jx (t)jp dx = 0

, 8t 2 [a; b] : jx (t)jp = 0
, 8t 2 [a; b] : jx (t)j = 0
, 8t 2 [a; b] : x (t) = 0
, x � 0:

(2) 8x 2 X; 8� 2 R; then

k�xk =
�Z b

a

j�x (t)jp dx
� 1

p

=

�
j�jp

Z b

a

jx (t)jp dx
� 1

p

= j�j
�Z b

a

jx (t)jp dx
� 1

p

= j�j kxk :

.
(3) 8x; y 2 X, we have

kx+ yk =
�Z b

a

j(x+ y) (t)jp dx
� 1

p

=

�Z b

a

jx (t) + y (t)jp dx
� 1

p

�
�Z b

a

jx (t)jp dx
� 1

p

+

�Z b

a

jy (t)jp dx
� 1

p

= kxk+ kyk :
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Take, for instance, the function x (t) = 1
x
2 L2 [1; 4], then

kxk =
�Z 4

1

jx (t)j2 dx
� 1

2

=

 Z 4

1

����1x
����2 dx

! 1
2

=
1

2

p
3:

Example 44 Let X = C0 be the space of all sequences that converge to 0
and kxk = sup

n2N
jxnj ; x = (xn) (C0; k�k), then (C0; k�k) is a normed space.

For instance, consider the sequences

x =

�
1

n

�
=

�
1;
1

2
;
1

3
; :::;

1

n
; :::

�
2 C0;

with the norm

kxk = sup
n2N

���� 1n
����

= 1;

and

y =

�
1

2n

�
=

�
1

2
;
1

4
;
1

8
; :::;

1

n
; :::

�
2 C0;

with the norm

kyk = sup
n2N

���� 12n
����

=
1

2
:

Example 45 The metric space (X; k�k) in each of the following three cases
is a normed space:

X = `1; kxk = sup
n2N

jxnj

X = `p; kxk =
� 1P
n=1

jxnjp
� 1

p

X = Lp [a; b] kxk = esssup
t2[a;b]

jx (t)j :
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Note that there is a di¤erence between the supremum (sup) and essential
supremum (esssup). For instance, if

x (t) =

8<: 1; t 2 [0; 1)2; t = 1;

then
esssup
t2[0;1]

jx (t)j = 1;

but
sup
t2[0;1]

jx (t)j = 2:

Example 46 Consider the sequence

x =
3p

n (n+ 1)
2 `2:

The following is a valid norm for `2

kxk =
 1X
n=1

jxnj2
! 1

2

=

 1X
n=1

9

n (n+ 1)

! 1
2

= 3

 1X
n=1

1

n (n+ 1)

! 1
2

= 3

 1X
n=1

�
1

n
� 1

n+ 1

�! 1
2

= 3:

Remark 47 Note that in the de�nition of a normed space, it was expilicitly
required that the space be a linear (vector) space. However, this is not a
condition for the space to be metric. Thus, a metric space is not necessarily
a normed space.
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Theorem 48 Every normed space is a metric space.

Proof. Let (X; k�k) be a normed space and de�ne d (x; y) = kx� yk. We
have:
(1) d (x; y) = kx� yk � 0 and d (x; y) = 0 , kx� yk = 0 , x � y =

0, x = y:
(2) d (x; y) = kx� yk = ky � xk = d (y; x) :
(3) d (x; y) = kx� yk = kx� z + z � yk � kx� zk+kz � yk = d (x; z)+

d (z; y) :
It simply follows that (X; d) is a metric space.

2.1 Convergent Sequences

De�nition 49 A sequence fxng is convergent to a point a in the normed
space (X; k�k) i¤:

lim
n!1

kxn � ak = 0;

which can be written as

8� > 0;9n0 2 N;8n 2 N : n � n0 ) kxn � ak < �:

2.2 Banach Spaces

De�nition 50 The normed space (X; k�k) is called a Banach space if every
Cauchy sequence is convergence in X.





Chapter 3

Inner Product Spaces

3.1 The Real Case

De�nition 51 Let X be a vector space on R. The inner product hx; yi such
that

h�; �i X �X ! R

(x; y)! hx; yi ;

satis�es the following conditions:
(1) 8x 2 X : hx; xi � 0 and hx; xi = 0, x = 0:
(2) 8x; y 2 X : hx; yi = hy; xi :
(3) 8x; y 2 X; 8� 2 R : h�x; yi = � hx; yi :
(4) 8x; y; z 2 X : hx+ y; zi = hx; zi+ hy; zi :
The space (X; h�; �i) is called an inner product space.

Remark 52 Based on the properties stated in De�nition 51, we have:
(1) h�x+ �y; zi = � hx; zi+ � hy; zi :
(2) hx; �yi = � hx; yi :
(3) hx; �y + �zi = � hx; yi+ � hx; zi :

Example 53 Let X = R and hx; yi = xy. Then, (R; h�; �i) is an inner
product space as it satis�es the four conditions:
(1) 8x 2 R : hx; xi = x2 � 0 and

hx; xi = 0, x2 = 0, x = 0:

19
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(2) 8x; y 2 R : hx; yi = xy = yx = hy; xi :
(3) 8x; y; � 2 R : h�x; yi = �xy = � hx; yi :
(4) 8x; y; z 2 R : hx+ y; zi = (x+ y) z = xz + yz = hx; zi+ hy; zi :

Example 54 Let X = L2 [a; b] and hf; gi =
R b
a
f (t) g (t) dt. We have:

(1) hf; fi =
R b
a
(f (t))2 dt � 0 and

hf; fi = 0,
Z b

a

(f (t))2 dt = 0

, 8t 2 [a; b] : (f (t))2 = 0
, 8t 2 [a; b] : f (t) = 0
, f � 0:

(2) hf; gi =
R b
a
f (t) g (t) dt =

R b
a
g (t) f (t) dt = hg; fi :

(3) h�f; gi =
R b
a
�f (t) g (t) dt = �

R b
a
f (t) g (t) dt = � hf; gi :

(4) hf + g; hi =
R b
a
(f + g) (t)h (t) dt =

R b
a
[f (t) + g (t)]h (t) dt =

R b
a
f (t)h (t) dt+R b

a
g (t)h (t) dt = hf; hi+ hg; hi :

Therefore, (Lp [a; b] ; h�; �i) is an inner product space.

Example 55 Let X = `2 and hx; yi =
1P
n=1

jxnynj. Is (X; h�; �i) an inner
product space? We have:

(1) 8x 2 `2 : hx; xi =
1P
n=1

x2n � 0 and

hx; xi = 0,
1X
n=1

x2n = 0

, 8n 2 N : x2n = 0
, 8n 2 N : xn = 0
, x = 0:

(2) 8x; y 2 `2 : hx; yi =
1P
n=1

jxnynj =
1P
n=1

jynxnj = hy; xi :
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(3) 8x; y 2 `2;8� 2 R : h�x; yi =
1P
n=1

j�xnynj = j�j
1P
n=1

jxnynj = j�j hx; yi 6=

� hx; yi if � < 0:
Hence, h�; �i is not an inner product and, consequently, (`2; h�; �i) is not an
inner product space.

Example 56 Let X = `2 and hx; yi =
1P
n=1

xnyn. Is (X; h�; �i) an inner prod-
uct space?

(1) 8x 2 `2 : hx; xi =
1P
n=1

x2n � 0 and

hx; xi = 0,
1X
n=1

x2n = 0

, 8n 2 N : x2n = 0
, 8n 2 N : xn = 0
, x = 0:

(2) 8x; y 2 `2 : hx; yi =
1P
n=1

xnyn =
1P
n=1

ynxn = hy; xi :

(3) 8x; y 2 `2;8� 2 R : h�x; yi =
1P
n=1

�xnyn = �
1P
n=1

xnyn = � hx; yi :

(4) 8x; y; z 2 `2 : hx+ y; zi =
1P
n=1

(xn + yn) zn =
1P
n=1

xnzn+
1P
n=1

ynzn = hx; zi+

hy; zi :
Therefore, (`2; h�; �i) is an inner product space.

Example 57 Consider the two functions f (t) = t and g (t) = cos t in
L2 [0; �]. The inner product as de�ned in Example 54 can be calculated as

hf; gi =
Z �

0

f (t) g (t) dt

=

Z �

0

t cos tdt

= t sin t]�0 �
Z �

0

sin tdt

= cos t]�0 = �2:
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Example 58 Consider the two sequences

x =

�
1;
1

2
;
1

3
; :::

�
2 `2;

and
y = f1; 1; 0; :::g 2 `2:

The inner product of the two sequences as de�ned in Example 56 is given by

hx; yi =
1X
n=1

xnyn

= 1 +
1

2
+ 0 + 0:::

=
3

2
:

Proposition 59 Let (X; h�; �i) be an inner product space and de�ne

kxk =
p
hx; xi:

Then,
jhx; yij � kxk � kyk :

Proof. Let
� =

hx; yi
hy; yi =

hx; yi
kyk2

:

We have 0 � kx� �yk2 = hx� �y; x� �yi

kx� �yk2 = hx� �y; x� �yi
= hx; x� �yi � � hy; x� �yi
= hx; xi � � hx; yi � � hy; xi+ �2 hy; yi
= kxk2 � 2� hx; yi+ �2 kyk2

= kxk2 � 2
�
hx; yi
kyk2

�
hx; yi+

�
hx; yi
kyk2

�2
kyk2

= kxk2 � 2hx; yi
2

kyk2
+
hx; yi2

kyk2

= kxk2 � hx; yi
2

kyk2
� 0;
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which is rearranged to produce

jhx; yij � kxk � kyk :

Proposition 60 Let (X; h�; �i) be an inner product space. Then, (X; k�k) is
a normed space where kxk =

p
hx; xi.

Proof. We aim to prove that kxk =
p
hx; xiis a valid norm by checking the

conditions in De�nition ??:
(1) We have

8x 2 X : hx; xi � 0)
p
hx; xi � 0) kxk � 0;

and
kxk = 0,

p
hx; xi = 0, hx; xi = 0, x = 0:

(2) We also have

k�xk =
p
h�x; �xi

=

q
�2 hx; xi

= j�j
p
hx; xi

= j�j kxk :

(3) Lastly,

kx+ yk2 = hx+ y; x+ yi
= kxk2 + kyk2 + 2 hx; yi
� kxk2 + kyk2 + 2 kxk � kyk
= (kxk+ kyk)2 ;

which yields
kx+ yk � kxk+ kyk :

Therefore, k�k is a norm and (X; k�k) is a normed space.

Proposition 61 Let (X; h�; �i) be an inner product space and de�ne kxk =p
hx; xi. Then,

kx+ yk2 + kx� yk2 = 2
�
kxk2 + kyk2

�
: (3.1)
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Remark 62 Not all norms are induced by an inner product. For a valid
norm to be induced by an inner product, it has to satisfy the equality 3.1.

Proof. Counter example: Consider the normed space (C [0; 1] ; k�k) where
kxk = sup

t2[0;1]
jx (t)j and de�ned the functions

x (t) = 1; y (t) = t; t 2 [0; 1] ;
which are clearly elements of C [0; 1]. We have

kxk = 1; kyk = sup
t2[0;1]

jtj = 1;

leading to

kx+ yk = sup
t2[0;1]

jx (t) + y (t)j

= sup
t2[0;1]

j1 + tj

= 2;

and

kx� yk = sup
t2[0;1]

jx (t)� y (t)j

= sup
t2[0;1]

j1� tj

= 1:

Since
kx+ yk2 + kx� yk2 = 5 6= 4 = 2

�
kxk2 + kyk2

�
;

then, C [0; 1] is not an inner product space.
Counter example: Consider the normed space (`1; k�k) where kxk =

sup
n2N

jxnj and let

x = (0; 1; 0; 1; ::::) 2 `1; kxk = 1;
and

y = (1; 0; 1; 0; ::::) 2 `1; kyk = 1:
We have

x+ y = (1; 1; 1; 1; ::::) 2 `1; kx+ yk = 1;
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and
x� y = (�1; 1;�1; 1; ::::) 2 `1; kx� yk = 1;

leading to

kx+ yk2 + kx� yk2 = 2 6= 4 = 2
�
kxk2 + kyk2

�
:

Counter example: Consider the normed space (`p; k�k) where kxk =� 1P
n=1

jxnjp
� 1

p

; p 6= 2, and de�ne

x = (1; 1; 0; 0; :::) ; y = (1;�1; 0; 0; :::) 2 `p:

The sum in di¤erence are given by

x+ y = (2; 0; 0; 0; :::) ;

and
x� y = (0; 2; 0; 0; :::) ;

respectively. We have the norms

kxk =
 1X
n=1

jxnjp
! 1

p

= 2
1
p ;

kyk =
 1X
n=1

jynjp
! 1

p

= 2
1
p ;

kx+ yk =
 1X
n=1

jxn + ynjp
! 1

p

= 2;

and

kx� yk =
 1X
n=1

jxn � ynjp
! 1

p

= 2;

leading to
kx+ yk2 + kx� yk2 = 8;

and
2
�
kxk2 + kyk2

�
= 4 � 2

2
p :



26 CHAPTER 3 INNER PRODUCT SPACES

This leads to a contradiction as

4 � 2
2
p = 8, p = 2;

which in our case yields

kx+ yk2 + kx� yk2 6= 2
�
kxk2 + kyk2

�
:

Thus, (`p; k�k) is not an inner product space for p 6= 2:

3.2 The Complex Case

De�nition 63 Let X be a vector space on C. The inner product hx; yi such
that

h�; �i X �X ! C

(x; y)! hx; yi ;
satis�es the following conditions:
(1) 8x 2 X : hx; xi � 0 and hx; xi = 0, x = 0:
(2) 8x; y 2 X : hx; yi = hy; xi:
(3) 8x; y 2 X; 8� 2 C : h�x; yi = � hx; yi :
(4) 8x; y; z 2 X : hx+ y; zi = hx; zi+ hy; zi :
It follows that (X; h�; �i) is called an inner product space.

Proposition 64 The conditions shown in De�nition 63 yields the following
for �; � 2 C and x; y; z 2 X:
(1) h�x+ �y; zi = � hx; zi+ � hy; zi :
(2) hx; �yi = h�y; xi = � hy; xi = �hy; xi = � hx; yi :
(3) hx; �y + �zi = h�y + �z; xi = �hy; xi+ �hz; xi = � hx; yi+ � hx; zi :

Example 65 Consider the vector space X = C. We de�ne the inner product
as

hx; yi = xy:
Then, (C; h�; �i) is an inner product space.
In order to show that h�; �i is an inner product, we verify the conditions of
De�nition 63:
(1) The �rst condition is 8x 2 C : hx; xi � 0, which is clear as

hx; xi = xx

= kxk22 � 0:
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Also
hx; xi = 0, kxk22 = 0, x = 0:

(2) The second condition is 8x; y 2 C : hx; yi = hy; xi, which can be veri�ed
as

hx; yi = xy = yx = yx = hy; xi:

(3) The third condition is 8� 2 C;8x; y 2 C. We have
h�x; yi = �xy

= � hx; yi
(4) The last condition is 8x; y; z 2 C : hx+ y; zi = hx; zi + hy; zi, which is
veri�ed by

hx+ y; zi = (x+ y) z = xz + yz = hx; zi+ hy; zi :

Example 66 Let X = L2 [a; b] on C and f 2 X, i.e. f : [a; b] ! C. We
de�ne the inner product as

hf; gi =
Z b

a

f (t) g (t)dt:

Solution 67 Similar to the previous example, we verify the four conditions
of De�nition 63:
(1) We have

hf; fi =
Z b

a

f (t) f (t)dt

=

Z b

a

kf (t)k22 dt � 0;

and

hf; fi = 0,
Z b

a

kf (t)k22 dt = 0

, kf (t)k22 = 0
, kf (t)k2 = 0
, f � 0 on [a; b] :
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(2) We have

hf; gi =
Z b

a

f (t) g (t)dt

=

Z b

a

g (t)f (t) dt

=

Z b

a

g (t) f (t)dt

= hg; fi :

(3) For the third condition:

h�f; gi =
Z b

a

�f (t) g (t)dt

= �

Z b

a

f (t) g (t)dt

= � hf; gi :

(4) Lastly,

hf + g; hi =
Z b

a

[f + g] (t)h (t)dt

=

Z b

a

h
f (t)h (t) + g (t)h (t)

i
dt

=

Z b

a

f (t)h (t)dt+

Z b

a

g (t)h (t)dt

= hf; hi+ hg; hi :

Hence, (L2 [a; b] ; h�; �i) where hf; gi =
R b
a
f (t) g (t)dt is an inner product

space.
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Example 68 Consider the space X = `2 with x = (xn)n2N and y = (yn)n2N
on C. We de�ne the inner product as

hx; yi =
1X
n=1

xnyn:

To verify this, we have:
(1) We have

hx; xi =
1X
n=1

xnxn

=
1X
n=1

kxnk22 � 0;

and

hx; xi = 0,
1X
n=1

kxnk22 = 0

, 8n 2 N : kxnk22 = 0
, 8n 2 N : kxnk2 = 0
, 8n 2 N : xn = 0
, x � 0:

(2) For the second condition, we have

hx; yi =
1X
n=1

xnyn

=
1X
n=1

ynxn

=
1X
n=1

ynxn

= hy; xi:
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(3) Also,

h�x; yi =
1X
n=1

�xnyn

= �
1X
n=1

xnyn

= � hx; yi :

(4) Lastly,

hx+ y; zi =
1X
n=1

[xn + yn] zn

=
1X
n=1

[xnzn + ynzn]

=
1X
n=1

xnzn +
1X
n=1

ynzn

= hx; zi+ hy; zi :

Therefore, (`2; h�; �i), with hx; yi =
P1

n=1 xnyn, is an inner product space.

3.3 Hilbert Spaces

De�nition 69 The inner product space (X; h�; �i) is called a Hilbert space if
it is complete, i.e. every Cauchy sequence is convergent on X.

Example 70 The inner product spaces (L2 [a; b] ; h�; �i) and (`2; h�; �i) (see
Examples 56 and 54) are Hilbert spaces.

Remark 71 Since every inner product space is a normed space, every Hilbert
space is a Banach space.
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3.4 Orthogonality

De�nition 72 Let (X; h�; �i) be an inner product space. The two elements
x; y 2 X are called orthogonal (x ? y) if hx; yi = 0:

Example 73 Consider the space L2 [0; 2�], and de�ne the two functions

x (t) = sin t;

and
y (t) = cos t:

The inner product of the two functions is given by

hx; yi =
Z 2�

0

x (t) y (t) dt

=

Z 2�

0

sin t cos tdt

=
1

2
sin2 x

�2�
0

= 0:

Thus, the two functions are orthogonal (x ? y).

Remark 74 For the inner product space (X; h�; �i),
* The set fx1; x2; :::g � X is called an orthogonal set if

8n;m (n 6= m) : hxn; xmi = 0:

* The set fx1; x2; :::g � X is called an orthonarmal set if it is orthogonal
and

8n : hxn; xni = 1:

Example 75 Consider the set

fe1; e2; :::g 2 `2;

where
e1 = (1; 0; 0; 0:::) ;

e2 = (0; 1; 0; 0:::) ;
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e3 = (0; 0; 1; 0:::) ;

...

en = (0; 0; 0; 0; :::0; 1; 0:::) :

Therefore, since hen; emi = 0 where n 6= m then fe1; e2; :::g is orthogonal,
and since hen; eni = 1 then fe1; e2; :::g is orthonormal.

Lemma 76 Let x; y 2 X be orthogonal elements. This is equivalent to

kx+ yk2 = kxk2 + kyk2 :

Proof. By de�nition, since x and y are orthogonal, hx; yi = 0. Therefore,

kx+ yk2 = hx+ y; x+ yi
= kxk2 + kyk2 + 2 hx; yi
= kxk2 + kyk2 :

3.5 Projections

De�nition 77 (Direct Sum) Let Y and Z be subspaces of a vector (linear)
space X. We say that X is a direct sum of Y and Z, denoted by X = Y �Z,
if:

8x 2 X : 9y 2 Y; z 2 Z : x = y + z:

Example 78 Consider the inner product space (R2; h�; �i) with hx; yi = x1y1+
x2y2 and de�ned the spaces

X = R2 = f(�; �) ; �; � 2 Rg ;

Y = R� f0g = f(�; 0) ; � 2 Rg ;
and

Z = f0g � R = f(0; �) ; � 2 Rg :
We can see that

R2 = (R� f0g)� (f0g � R) ;
as

8x = (�; �) 2 R2 : (�; �) = (�; 0) + (0; �) ;
where (�; 0) 2 (R� f0g) and (0; �) 2 (f0g � R).
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De�nition 79 (Orthoplement) Let (X; h�; �i) be an inner product space.
The orthoplement of Y � X, denoted by Y ?, is de�ned by

Y ? = fy 2 X : y ? Y g ;

where y ? Y is equivalent to

8x 2 Y : y ? x:

Example 80 Consider the inner product space (R2; h�; �i). The orthoplement
of Y = R� f0g is given by

Y ? = f0g � R:

Theorem 81 Let Y be a closed subspace of a Hilbert space H, then

H = Y � Y ?;

i.e.
8x 2 H; 9y 2 Y; z 2 Y ? : y ? z and x = y + z:

De�nition 82 The element y 2 Y is called a projection of x 2 H. In this
case we can de�ne a map

P : H ! Y

x! Px = y;

in which case P is called a projection operator.
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Operators

De�nition 83 An operator A is a mapping form a set X into a set Y , that
is A : X ! Y .

Example 84 The function f de�ned by f (x) = x2 maps the set X =
f1; 2; 5g into Y = f1; 4; 25g. We write

f : X ! Y

x! x2:

Example 85 The di¤erential operator d
dt
maps X = ft2; sin t; e5tg into Y =

f2t; cot t; 5e5tg :

Example 86 Among the many types of integral operators, we have:
(1) The Volttera integral operator Ax (t) =

R t
0
x (s) ds, which maps X =

f1; t2; e5tg into Y =
n
t; t

3

3
; 1
5
(e5t � 1)

o
:

(2) The Fredholm integral Ax (t) =
R 1
0
x (s) ds, which maps X = f1; t2; e5tg

into Y =
�
1; 1

3
; 1
5
(e5 � 1)

	
:

(3) The Laplace integral operator 4 (f (t)) =
R1
0
e�stf (t) dt maps X =

f1; t2; e5tg into Y =
�
1
s
; 1
s2
; 1
s�1
	
:

De�nition 87 An operator A : X ! Y where X; Y � R is called a function.

De�nition 88 An operator A : X ! R is called a functional.

Example 89 The Fredholm integral operator is an example of a functional.

35
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De�nition 90 A operator A : X ! Y is said to be linear if X and Y are
linear (vector) spaces on R and

8�; � 2 R; 8x; y 2 X : A (�x+ �y) = �Ax+ �Ay:

Example 91 The di¤erential operator d
dt
is a linear one since

d

dt
(�x+ �y) = �

d

dt
x+ �

d

dt
y:

Similarly, the integral operator is linea asZ
(�x+ �y) = �

Z
x+ �

Z
y:

Remark 92 The linear operator A : X ! R is called a linear functional.

Example 93 Consider the functional A : X ! R such that Ax = x2. We
have

A (�x+ �y) = (�x+ �y)2

= �2x2 + �2y2 + 2��xy

6= �Ax+ �Ay

= �x2 + �y2;

and thus A is not a linear operator.

Example 94 For the functional Ax (t) =
R 1
0
jx (s)j2 ds, we have

A (�x+ �y) =

Z 1

0

(�x+ �y)2 ds

6= �

Z 1

0

x2ds+ �2
Z 1

0

y2ds:

Hence, A is not a linear functional.

Example 95 The Laplace operator is linear since

4 (�x+ �y) =
Z 1

0

e�st (�x+ �y) ds

=

Z 1

0

�e�stxds+

Z 1

0

�e�styds

= �

Z 1

0

e�stxds+ �

Z 1

0

e�styds

= �4 (x) + �4 (y) :
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De�nition 96 (Unit operator) The operator I : X ! X is called a unit
operator if Ix = x.

Example 97 The operator I =

0@ 1 0
0 1

1A is a unit operator from R2 to R2

as 0@ 1 0
0 1

1A0@ x
y

1A =

0@ x
y

1A :
De�nition 98 (Inverse operator) The operator B : Y ! X is called a
left or right inverse of the operator A : X ! Y if BA = I or AB = I,
respectively.
If B is the left and right inverse simultaneously, it is called the inverse,
denoted by A�1, i.e.

BA = AB = I:

Example 99 Let A := d
dt
and B :=

R t
0
. According to the fundamental theo-

rem of calculus, we have

d

dt

Z t

0

f (s) ds = f (t) ;

and Z t

0

d

ds
f (s) ds = f (t)� f (0) :

Note that A is the left inverse of B but A is not the right inverse of B.
Similarly, B is the right inverse of A but B is not the left inverse of A.

Lemma 100 There exists at most one inverse to any operator.

Proof. Let A : X ! Y . The proof is separated into two parts:

1) If no inverse exists, then we have nothing to prove.
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2) If B;C : Y ! X are two inverses of A, then AC = I and BA = I,
which leads to

B = BI

= BAC

= IC

= C:

De�nition 101 Let (X; k�kX) and (Y; k�kY ) be two normed spaces. The op-
erator

A : X ! Y

is said to be:
Bounded: If there exists C > 0 such that 8x 2 X:

kAxkY � C kxkX :

Continuous: If 8x; y 2 X:

lim
kx�ykX!0

kAx� AykY = 0:

Example 102 De�ne the operator A : C [0; 1]! C [0; 1] as

Ax =

Z t

0

x (s) ds:
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We have

kAxk = sup
t2[0;1]

jAx (t)j

= sup
t2[0;1]

����Z t

0

x (s) ds

����
� sup

t2[0;1]

Z t

0

jx (s)j ds

� sup
t2[0;1]

Z 1

0

kxk ds

= kxk sup
t2[0;1]

Z t

0

ds

= kxk sup
t2[0;1]

t

= kxk :

Thus,
kAxk � kxk ;

which shows that A is a bounded operator.

Example 103 De�ne A : C [0; 1]! R

Ax =

Z 1

0

x (s) ds

kAxk = jAxj

=

����Z 1

0

x (s) ds

����
�
Z 1

0

jx (s)j ds

�
Z 1

0

kxk ds

= kxk

Then A is bounded operator.
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Example 104 De�ne T : X ! R such that Tx = kxk. We want to show
that T is a bounded operator. We have

kTxk = jTxj
= jkxkj
= kxk :

Then, T is a bounded operator. Also, 8x; y 2 X:

kTx� Tyk = jTx� Tyj
= jkxk � kykj
� kx� yk ;

leading to
lim

kx�yk!0
kTx� Tyk = 0;

which means that T is continuous.

Example 105 Let us show that the di¤erential operator is not bounded.
Consider the family of continuous functions on [0; 1]

fxng = ftng n = 1; 2; 3:::

First, note that 8n 2 N, the norm of xn is de�ned by

kxnk = sup
t2[0;1]

jtnj = 1:

We have  ddxxn
 =  ddxtn


=
ntn�1

= n
tn�1

= n:

Note, as n!1:
kxnk ! 1

but  ddxxn
 = n!1:

Therefore, there does not exist C > 0 such that
 d
dx
xn
 � C kxnk.
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Theorem 106 A linear operator is bounded if and only if it is continuous.

Proof. If T is a linear operator, then

T (0) = T (x� x)
= Tx� Tx
= 0:

Now, let us divide the proof of the equivalence into two main parts:
First, if T is bounded then 8x; y 2 X : 9C > 0. We have

kTx� Tyk = kT (x� y)k � kx� yk ;

and thus
lim

kx�yk!0
kTx� Tyk = 0:

Hence, T is continuous. This proves the forward implication.
Second, assume T is not bounded. It follows that there exists a sequence

fxng such that
8n 2 N : n kxnk � kTxnk :

De�ne a new sequence fx�ng as

x�n =
xn

n kxnk
;

for which

kx�n � 0k = kx�nk

=

 xn
n kxnk


=

kxnk
n kxnk

=
1

n
;

and

kTx�n � T0k = kTx�nk

=

T xn
n kxnk


=
kTxnk
n kxnk

� 1:
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Hence,
lim
n!1

kx�n � 0k = 0;

but
lim
n!1

kTx�n � T0k � 1;

which implies that T is not continuous.

Remark 107 The di¤erential operator is linear unbounded, and thus it is
not continuous.

Example 108 De�ne the operator T : `1 ! `1 by Tx = z where x =
(xn) ; z = (zn), and

zn =

Pn
i=1 xi
n

:

Let us show that T is linear, bounded and continuous.
First, we have

T (�x+ �y) =

�
�x1 + �y1;

� (x1 + x2) + � (y1 + y2)

2
; :::

�
=

�
�x1;

� (x1 + x2)

2
; :::

�
+

�
�y1;

� (y1 + y2)

2
; :::

�
= �

�
x1;
x1 + x2
2

; :::

�
+ �

�
y1;
y1 + y2
2

; :::

�
= �T (x) + �T (y) ;

which implies that T is a linear operator.
Second,

kTxk`1 = sup
�
jx1j ;

jx1 + x2j
2

; :::

�
:

It follows that 8n 2 N:����Pn
i=1 xi
n

���� � Pn
i=1 jxij
n

�
Pn

i=1 kxk
n

= kxk ;

and thus
kTxk`1 � kxk ;

which means that T is bounded . Now, since T is linear and bounded, then
it is continuous.
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4.1 Fundamontal Theorems

Theorem 109 (Riezs repesentation theorem) For every bounded linear
functional f de�ned on a Hilbert space H, i.e. f : H ! R, there exists a
unique z 2 H such that

f (x) = hx; zi ; 8x 2 H: (4.1)

Remark 110 The functional f de�ned by (4.1) is bounded and linear since

f (�x+ �y) = h�x+ �y; zi
= � hx; zi+ � hy; zi
= �f (x) + �f (y) ;

and

kf (x)k = jf (x)j
= jhx; zij � kxk kzk ;

leadings to
kf (x)k � c kxk ; c = kzk :

Hence, as f is bounded and linear, it is continuous.

Theorem 111 (Hahn-Banach theorem) Assume G is a subspace of the
normed space E. For every linear functional f on G, there exists a linear
functional F de�ned on E such that

f (x) = F (x) ; 8x 2 G:

Remark 112 The functional F is called an extention of f .

De�nition 113 (Dual or conjugate space) The dual space of the normed
space E consists of all bounded linear functionals de�ned on E

f : E ! R:

This space is denoted by E�.
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Example 114 For E = C [0; 1] and kxk = sup jx (t)j, we de�ne f : C [0; 1]!
R by

f (x) =

Z 1

0

x (t) dt:

Since f is a linear and bounded operator, then f 2 C� [0; 1].

Remark 115 If E is a Hilbert space, then all functionals forming the dual
of the Hilbert space are of the form:

f 2 H�; 8x 2 H; f (x) = hx; zi ; z 2 H:

Theorem 116 The dual space E� with the norm

kfkE� = sup
x 6=0

jf (x)jR
kxkE

is a Banach space.

Proposition 117 For every f 2 E�, we have

jf (x)j � kfk � kxk ; 8x 2 E: (*)

Proof. We consider two separate cases:
The �rst is where x = 0 , in which case (??) is true as f (0) = 0 and

k0k = 0.
The second case is where x 6= 0, which yields

jf (x)j
kxkE

� sup
x 6=0

jf (x)j
kxkE

= kfkE� :

Therefore,
jf (x)j � kfkE� � kxkE :

Theorem 118 The dual space of Lp [a; b] is isomorphic to Lq [a; b] with 1
p
+

1
q
= 1 and p 2 [1;1) in the following sence:

For each f 2 L�p [a; b], there exists a corresponding g 2 Lq [a; b] such that

f (x) =

Z b

a

g (t)x (t) dt:

We write
L�p [a; b] ' Lq [a; b] :
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Example 119 The following examples follow from the previous theorem

L�2 [a; b] ' L2 [a; b] ;

L��2 [a; b] ' L2 [a; b] ;

L�3 [a; b] ' L 3
2
[a; b]

�
1

3
+

1

3=2
= 1

�
;

L�1 [a; b] ' L1 [a; b]

�
1

1
+
1

1 = 1

�
:

Example 120 Considering that p 2 [1;+1) and1
q
+ 1

p
= 1, we have

`�p ' `q;

and

`�5 ' ` 5
4

�
1

5
+

1

5=4
= 1

�
:

Exercise 121 Show that C�0 ' `1 and `�1 � `1.

De�nition 122 The normed space E is said to be re�exive if the second dual
E�� is isomorphic to E; that is

E�� = (E�)� ' E:

Lemma 123 The following statements hold:
(1) The spaces Lp [a; b] and `p for p 2 (1;+1) are re�exive, i.e.

L��p [a; b] ' Lp [a; b] ;

and
`��p ' `p:

(2) All Hilbert spaces are re�exive.
(3) The space C0 is not re�exive as

C��0 = (C�0)
�

= (`1)
� ' `1:
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De�nition 124 (Weak and Strong Convergence) Let fxng be a sequence
in the normed space (E; k�k):
(1) We say that fxng converges strongly to x0 if

lim
n!1

kxn � x0kE = 0:

We write xn ! x0.
(2) We say that fxng convergs weakly to x0 if for every f 2 E�,

lim
n!1

jf (xn)� f (x0)j = 0:

We write xn * x0.

Remark 125 Strong convergence implies weak convergence. Consider the
following estimate

jf (xn)� f (x0)j = jf (xn � x0)j � kfk � kxn � x0k :

If the right hand side goes to zero, i.e.

lim
n!1

kxn � x0kE = 0;

then the right hand side does as well

lim
n!1

jf (xn)� f (x0)j = 0:

Remark 126 There are weakly converging sequences that do not converge
strongly.

Example 127 Consider the Hilbert space `2 and the sequence fxng where

x1 = (1; 0; 0; 0; :::::) ;

x2 = (0; 1; 0; 0; :::::) ;

x3 = (0; 0; 1; 0; :::::) ;
...

xn = (0; 0; :::; 0; 1; 0; :::::) :

Note that
lim
n!1

xn = (0; 0; 0; 0; :::::) =: x0;
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which yields

kxn � x0k = k(0; 0; :::; 0; 1; 0; :::::)k
= kxnk
= 1:

Therefore,
lim
n!1

kxn � 0k = 1 6= 0:

Hence, this sequence is not strongly convergent. However, since `2 is a Hilbert
space, then for any f 2 `2, there exists a = fang 2 `2 such that f (x) = hx; ai,
x 2 `2, then

f (xn) = hxn; ai
= an:

Since

a = fang 2 `2
1X
n=1

a2n <1;

we have
lim
n!1

janj = 0:

This along with the fact that

jf (xn)� f (0)j = jf (xn)j
= janj ;

leads to
lim
n!1

jf (xn)� f (0)j = 0;

then
xn * x0 = 0:

De�nition 128 (Adjoint Operator) Let (X; h�; �i) be a an inner product
space. The adjoint operator T � of the operator T : X ! X satis�es

8x; y 2 X : hTx; yi = hx; T �yi :
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Example 129 De�ne the operator T : L2 [0;1]! L2 [0;1] by

Tx (t) = x

�
t

5

�
t 2 [0;1) :

We want to show that T � can be de�ned as

T �x (t) = 5x (5t) :

We have

hTx; yi =
Z 1

0

Tx (t) y (t) dt

=

Z 1

0

x

�
t

5

�
y (t) dt; (4.2)

and

hx; T �yi =
Z 1

0

x (t)T �y (t) dt

=

Z 1

0

x (t) � 5x (5t) dt:

We can integrate by substitution. Let8>>><>>>:
u = 5t; du = 5dt

t = 0! u = 0

t =1! u =1:

Substituting yields

hx; T �yi =
Z 1

0

x
�u
5

�
y (u) du: (4.3)

From (4.2) and (4.3), we obtain

hTx; yi = hx; T �yi :

Lemma 130 If T � is the adjoint operator of T , then
(1) 8x; y 2 X : hT �x; yi = hx; Tyi ;
(2) T �� = T; and
(3) 8� 2 R : (�T )� = �T �:
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Proof. First, for the �eld of real numbers R, we have:
(1) 8x; y 2 X :

hT �x; yi = hy; T �xi
= hy; T �xi
= hTy; xi
= hx; Tyi :

Second, for the �eld of complex number C, we have:
(1) We have

hT �x; yi = hy; T �xi
= hy; T �xi
= hTy; xi
= hx; Tyi :

(2) For the second property, we have

hT ��x; yi = hx; T �yi
= hTx; yi ;

leading to
8x; y 2 X : hT ��x; yi = hTx; yi :

Thus,
T �� = T:

(3) For every � 2 R, we have

h(�T )� x; yi = hx; �Tyi
= � hx; Tyi
= � hT �x; yi
= h�T �x; yi :

Therefore,
(�T )� = �T �:

Note that if � 2 C,
(�T )� = �T �:
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De�nition 131 An operator T is said to be self-adjoint if T = T �; that is
8x; y 2 X : hTx; yi = hx; Tyi.

De�nition 132 An operator T is said to be unitary if T � = T�1; that is
8x; y 2 X : hTx; yi = hx; T�1yi.

Example 133 Let T : L2 [a; b]! L2 [a; b] where

Tx (t) = tx (t) ; t 2 [a; b] :

We will prove that T is self-adjoint. We have

hTx; yi =
Z b

a

Tx (t) y (t) dt

=

Z b

a

tx (t) y (t) dt; (4.4)

and

hx; Tyi =
Z b

a

x (t)Ty (t) dt

=

Z b

a

x (t) ty (t) dt: (4.5)

From (4.4) and (4.5), we obtain that T is self-adjoint.

Example 134 De�ne the operator T : L2 [0; 1]! L2 [0; 1] by

Tx (t) = x (1� t)

Observe that

hTx; yi =
Z 1

0

Tx (t) y (t) dt

=

Z 1

0

x (1� t) y (t) dt:

We use the following change of variable8<: u = 1� t! du = �dt

t = 0! u = 1; t = 1! u = 0:
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Substitution yields

hTx; yi = �
Z 0

1

x (u) y (1� u) du

=

Z 1

0

x (u) y (1� u) du

=

Z 1

0

x (u)Ty (u) du

= hx; Tyi :

Hence, T is self-adjoint.

Lemma 135 Let T and S be two operators de�ned on the inner product
space (X; h�; �i), then
(1) TT � is self-adjoint, and
(2) (ST )� = T �S�.

Proof. For the �rst property, we have

hTT �x; yi = hT �x; T �yi ;

leading to
hx; TT �yi = hT �x; T �yi ;

which implies that TT � is self-adjoint.
For the second property,

h(ST )x; yi = hTx; S�yi
= hx; T �S�yi :

This produces

h(ST )x; yi = hx; (ST )� yi ;

which means that (ST )� = T �S�.

Lemma 136 If T is a unitary operator then:
(1) It preserves the length of the element x, i.e. kTxk = kxk ..
(2) It preserves of the angle, i.e. hTx; Tyi = hx; yi.
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Proof. For the length, we have

kTxk2 = hTx; Tyi
=


x; T�1Tx

�
= hx; xi
= kxk2 ;

which leads to property (1).
For the angle, it is easy to see that

hTx; Tyi =


x; T�1Ty

�
= hx; yi :
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