ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/311858080

Functiona Analysis_v5

Data - April 2016

DOI: 10.13140/RG.2.2.30261.68325

CITATIONS READS
0 14
2 authors:
S. Abdelmalek . Samir Bendoukha
Université de Tébessa Taibah University
24 PUBLICATIONS 93 CITATIONS 19 PUBLICATIONS 9 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

poject  Polynomial Matrices for Signal Processing and Communications View project

ot Generalized Lengyel-Epstein System View project

All content following this page was uploaded by S. Abdelmalek on 23 December 2016.

The user has requested enhancement of the downloaded file.



Summary of the Course: Functional Analysis
(Math—412)

Salem Abdelmalek & Samir Bendoukhal

May 8, 2016 Version 1

'Taibah University, Yanbu Branch



Contents

Preface

1 Metric Spases

1.1 Convergence of Sequences . . . . . ... ... ... ......
1.2 Cauchy Sequences . . . . . . . . ... ..o
1.3 Complete Metric Spaces . . . . . . .. ... ... .. .....
1.4 Some Applications . . . . . .. ...
2 Normed Space
2.1 Convergent Sequences . . . . . . . . . ...
2.2 Banach Spaces . . . . .. . ... ...
3 Inner Product Spaces
31 TheReal Case. . . . . . . . . . ... .. ....
3.2 The Complex Case . . . . . .. .. ... . ....
3.3 Hilbert Spaces . . . . . . . ... .
3.4 Orthogonality . . . . . ... .. .. .. ... .. ...,
3.5 Projections . . . .. ...

4 Operators
4.1 Fundamontal Theorems. . . . . . . . . . . . . . . . ... ...



Preface

X






Chapter 1

Metric Spases

Definition 1 Let X be a non-empty set (X # () and d a real-valued function
defined on X x X

d: Xx X —R
(a,b) — d(a,b)

such that for a, b € X:

(i) d(a,b) >0 and d(a,b) = 0 if and only if a = b.

(ii) d (a,b) = d(b,a).

(111) d(a,c) < d(a,b) +d(b,c) (the triangle inequality) for a, b and c in X.
Then, d is said to be a metric on X, (X,d) is called a metric space, and
d (a,b) is referred to as the distance between a and b.

Example 2 The function

d: RxR—R
(a,0) — |a —b|

18 a metric on the set R since

(i) d(a,b) = la—0b] > 0 for all a,b € R, and d(a,b) =0 < |a—b] =0 <
a—b=0<a=0.

(i1) d (a,b) = |a —b| = |b—a| =d(b,a), and

(iti) d(a,c) =|la—c|=|la—b+b—c| <|la—0b+|b—c|=d(a,b)+d(bc).
(this is deduced from the inequality |x + y| < |z| + |y|).

The distance d considered here is known as the Fuclidean metric on R.
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Example 3 Similar to the previous example, we can show that the function
d: R2xR? =R
(ar.02) , (b1.52)) — 1/ (a1 — b)* + (a2 — by)’

is a metric on R2. It is called the Euclidean metric on R2.

Example 4 Let X be a non-empty set and d the function from X x X into
R defined by

0ifa=0b
1ifa#b.

Then, d is a metric on X and is called the discret metic.

d(a,b) =

Example 5 We can define another metric on R? by choosing
d* ((a1,az), (b1,b2)) = max {|ay — by, |az — ba|} .
This form of distance can be generalised to n-dimensions, i.e. R" as
d* (A, B) = H_15117X{|a¢ —bil},
where A = (a1, as, ...,a,) and B = (b1, ba, ..., by).
Example 6 Yet another metric on R? is given by
dy (a1, az) , (b1, b2)) = |az — bi| 4 |az — baf

which can also be generalized to R™ as
d’ (AaB) = Z |ai - bl| )
i=1

where A = (a1, as, ...,a,) and B = (b1, bs, ..., by,).

Example 7 We can also define what is known as the Holder metric on R™
by

with p € [p, 00).



Many important examples of metric spaces are "function spaces". For
these, the set X on which we put a metric is a set of functions. The following
are some examples concerning function spaces.

Example 8 Let C'[0,1] denote the set of continuous functions from [0,1]
into R. The following metric may be defined on this set

d(f,g>=/0 f (@) — g (a)|dx,

where f and g are in C'[0,1].

Example 9 For the same set C'[0,1] defined in the previous example, we
define another metric as follows

d*(f,g9) = sup |f(x)—g ()]

z€[0,1]

Definition 10 Let (X,d) be a metric space and r any positive real number.
The open ball about a € X of radius r is the set

B, (a) ={x € X| d(xz,a) <r}.

Example 11 In the metrixz space form by R and the Euclidean metric, B, (a)
is the open interval (a —r,a +r).

Example 12 In R? with the Euclidean metric, B, (a) becomes the open disc
with center a and radius r.

Example 13 In R? with the metric d* given by
d* ((a1,a2), (b1, b2)) = max {|a; — ba|,[az — b},
the open ball By ((0,0)) is the square plate depicted in Figure???.
Example 14 In R? with the metric d, given by
dy (a1, az) , (b1, b2)) = |ax — by| + [az — by,

the open ball By ((0,0)) is the diamond shape depicted in Figure???.
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Corollary 15 Let (X,d) be a metric space and By and Bs open balls in
(X,d). Then, By N By is a union of open balls in (X, d).

Proposition 16 Let (X,d) be a metric space. The collection of open balls
in (X, d) is a basis for a topology T on X.

Example 17 If d is the Euclidean metric on R, then a basis for the topology
T induced by the metric d is the set of all open balls defined by

Bs(a) = (a—d,a+9).

Definition 18 Metrics on a set X are said to be equivalent if they induce
the same topology on X.

Example 19 The metrics d, d*, d, defined on R? in examples 3, 5, and 6,
respectively, are equivalent.

Proposition 20 Let (X,d) be a metric space and T the topology induced
on X by the metric d. A sub set U of X is open in (X,7) if and only if
Va € U, Je > 0 such that the open ball B, (a) C U.

Proposition 21 If (X,d) is a metric space and T is the topology induced on
X by d, then (X, 1) is a Hausdorff space (Tx—space) defined as

Va,b€ X;a#b, U,V €1 such thatac U, beV, andUNV =0. (1.1)

Proof. Since a,b € X;a # b, then d(a,b) = € > 0. We can define the two
open balls U = B¢ (a) and V' = B¢ (b), which satisfy (1.1). =

1.1 Convergence of Sequences

Definition 22 Let (X, d) be a metric space and (z,,), oy @ Sequence of points
i X. The sequence is said to converge to x € X if

limd(z,,2) =0&Ve>0,3Ing e N,Vn e N:n >ng = d(z,,2) <e.

n—oo



ot

1.1 CONVERGENCE OF SEQUENCES

3=

Example 23 consider the metric space (R,||). The sequence x, = 1+
converges to x = 1. First, we have

1
d(x,, ) = ‘1—1—5—1'
1
T on

Then, the limist of the distance as n approaches infinity is given by

1

limd(z,,z) = lim —

n—oo n—oo N,
= 0.

Therefore, (x,) is convergent towards 1 in (R, |-|).

Proposition 24 Any sequence (x,), .y defined in a metric space (X, d) is
at most convergent towards a unique point, i.e.

limd (z,,z) =0
nee = =Y. (1.2)
lim d (z,,y) =0

n—oo

Proof. The aim is to prove (1.2). Assuming that lim d (z,,x) = 0 leads to

Ve >0,3ng e N,Vn e N:n > ng = d(z,,z) <e, (1.3)
and similarly lim d (z,,y) = 0 yields
Ve>0,3n; e NVn e N:n >ny = d(z,,y) <e. (1.4)

Hence, for any n > max {ng, n;}, (1.3) and (1.4) imply that d (z,,z) < € and
d(z,,y) < €, which can be rewritten as

d(Tn, ) +d(z,,y) < 2e.
Futher simplification yields
d(z,y) < d(z,2n) + d (20, y) < 2e.

Therefore,
Ve>0:d(z,y) <2e=d(z,y) =0=>z=y.
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Proposition 25 Let (X,d) be a metric space. A subset A of X is said to
be closed in (X, d) iff every convergent sequence of points in A converges to
a point in A.

Example 26 The subset A= {1,1,%,...} of R is not closed in (R,||) since

VneN:LeA limi=0¢A.
Example 27 The subset Q of R is not closed in (R,||) as the sequence
(1 + %)n € Q converges towards lim (1 + %)n =e¢ Q.

n—oo

Proposition 28 Let (X,d) and (Y,d') be metric spaces and f a mapping of
X into Y, then f is continuous at xy € X iff u liH)l Od’ (f (x), f(x)) =0,
,20)—

1.€.
Ve > 0,30 > 0,Vr : d(z,20) <d=d (f(x), f(x0)) <€

Example 29 Consider the mapping

z— f(x),
which is continuous at xq iff | 1irr|1 ; |f () — f (zo)| = 0, which is equivalent
T—xo|—
to lim f (z) = f (xo), i.e.
T—x0

Ve > 0,30 > 0,Vz : |z —xo| <0 =|f(x) — f(x0)] <e

. Lz #y .
Exercise 30 Let X = R and d(z,y) = . Is the sequence (1)

0;x =1y
convergent? Justify your answer.

1.2 Cauchy Sequences
Definition 31 (Cauchy sequence) Let (X,d) be a metric space. The se-
quence {x,} C X is called a Cauchy sequence if

lim d(zp,zm) =0,

n,m—00

which can be written as

Ve >0,dng e N,Vn,m € N:n,m > ng = d(z,,x,) < €.
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Proposition 32 In (R, |-|), the sequence is Cauchy sequence iff it is a con-
vergent.

Example 33 Consider the metric space (X, d), where X = N andd (n,m) =
‘% — %‘ We want to show that the sequence {n} is a Cauchy sequence but
that it s not convergent. We have

d(zp,xm) = d(n,m)
1 J—
n

1‘ 1 1
e B
m n m

Taking the limist as n and m approch infinity yields

n,M—00 n,m—oo \ 7 m

1 1
0< lim d(x,,x,) < lim (——i——)—O.

Therefore,
lim d(zn,zm) =0,

n,Mm—00

which proves that {n} is a Cauchy sequence. However, assume that the se-
quence converge towards a value a € N, i.e.

limd(z,,a) = limd(n,a)

1
= _%07
a

which 1s a contradiction. Hence, the sequence is divergent.

1.3 Complete Metric Spaces

Definition 34 A metric space is called complete if every Cauchy sequence
defined in it converges to an element of the space.

Example 35 The metric space (X,d) with X =N and d(n,m) = |t — X
18 not complete.

Example 36 The metric space ((0,1],|:|) is not complete since, for in-
stance, the sequence {%} is a Cauchy sequence that converges to the point

0¢ (0,1].

Example 37 The metric space (R, |-|) is complete following Proposition 32.
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1.4 Some Applications

Are the following applications valid distances (metric)?
o X =R, d(z,y) = |z* — ¥?|. (not metric)
e X =1[0,2], d(z,y) =sin|z — y|. (metric)

e X =1[0,2], d(z,y) = cos|z — y|. (not metric)

X =N, d(n,m) =|n—m|. (metric)

X =N, d(n,m) = |+ — L|. (metric)

n m

Lin#m
X =N, d(n,m)= . (metric)

O;n=m

e X = Ca,b| is the space of continuous function on [a,b] and d (f,g) =
L;
f#9 . (metric)
0 f=g

e X = () is the space of all sequences that converge to 0 and d (z,y) =

sup |z, — y,| such that x = (x,) and y = (y,,). (metric)
neN

e X =/, : p € [l,00) is the space of all sequences (z,) such that

1

oo ) ;
> |zal? < oo (series is convergent) and d,, (z,y) = <E |z, — yn\p) . (metric)
n=1

n=1

e X =/ isthespace of all bounded sequences and d, (x,y) = sup |z, — yy|
neN

such that = = (z,,) and y = (y,,). (metrix)
Also prove that
by ClyC....CCyCly

and
deo (z,y) = lim d, (z,y) .
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e X = L, ]a,b] is the space of p-integrable functions on [a, ], i.e. fab |f (x)]P dx <

1

00, and d, (f, g) = ( M1 @) dx)? (metric)
If f(x) =21,g(x)=2¢€ L;[1,4], find the distance d, (%, %)

x T

e X = L [a,b] is the space of essentially bounded functions on [a, b] and
dso (f,g) = esssup |f (z) — g (x)|. (metric)

z€[a,b]

Also prove that

Ly [a,b] C ... C Ly[a,b] C Ly [a,b].

e Let (X, d) be a metric space. Prove that d' (z,y) = 11(;(5)?,) is also a
distance.






Chapter 2

Normed Space

Definition 38 Let X be a linear space. The function

Il X =R

z— ||z

s said to be a morm if it satisfies the conditions
(1)Vrx € X : ||z|| >0 and ||z|| =0 < z = 0.
(2)Vr e X,VA€R or C: || Az|| = |A| ||z .

(3) Va,y € X : o+ g < o] + ]

In this case (X, ||-]|) is called a normed space.

Remark 39 The second condition implies
=2 =[]l

Example 40 Let X =R and ||z|| = |z|, then (R, |-|) is a normed space since
(1)VreR: |z| >0 and |z| =0z =0.

(2) Ve € R,VA € R @ |Az| = || |z].

(3) Vo, y € R o +y| < |a| +[y].

Example 41 Let X = C'la,b] and ||f|| = sup |f (t)|, then (X,|-|) is a
t€la,b]

normed space as shown below:

(1)Vfe X |fl= sup [/ ()] =0 and

tela,b

11
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IfIl = 0 sup |f(£)] =0

te(a,b]
& Vtelab:|ft)=0
& Velab: f(t)=0
< f=0.

(2)Vf e X, VA e€R we have

IAfIF = sup [Af(2)]

tela,b]

sup [A[[f (1)]

t€[a,b]

= [Al sup [f (?)]

t€la,b]

= A

(3)Vf,g € X we have

If + 9l = sup [(f +9) ()]

tE(a,b]

= sup |f(¢) +g(t)]
te(a,b]

< sup [f (¢)| + sup [g(?)]
te(a,b) te[a,b]

= I/ + llgll -

For instance, consider the function
f(t)=t—costeC0,].
The defined norm is given by

Ifl = sup [t — cost].
te[0,n]
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In order to calculate the supremum, first, take the derivative f° (t) =1-

sinx > 0, meaning that f is increasing. Hence,

L/l

sup |t — cost|
tel0,m]

= T —COST

=77+ 1.

Proposition 42 Let (X, ||-||) be a normed space, then

Vo,y € X |llzfl = [lylll < llz =yl

Proof. First, we know that
2]l = flz =y +yll < llz =yl + [yl
which can be rewritten as
2]l = llyll < [l — yll-
Similarly, we have

Iyl = lly — 2 + 2|l < lly — =[] + [l ,

yielding
= [lz =yl < llzll = llyll
From (2.1) and (2.2) we get

=z =yl < ll=ll = llyll < ll= = yll,

which simplifies to
izl =yl < llz =yl -

(2.1)

Example 43 Consider the metric space formed by X = L, [a,b] and ||z| =

(ff |z () dx) ? | then (Ly [a,b],||Il) is a normed space as proven below:
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1

(J)VxEX:HxH:<f |z (¢ \pdx> >0, and

o] = 0 (/ab|x<t>|”da:)p:o

b
o / = () dz = 0
a p:0

[

& Ve a, b |x
& Ve a, b |x
& YVt e a,b):x(t)=0
& x=0.

(2)Vxr € X, Y\ €R, then

el = ([ <t>|pdx);
_ (|)\|p/ab|x(t)|pdx);
I (/ab|a:<t>|pdm)‘l’

= Al l=]]

(8) Vr,y € X, we have

ool = ([ 1e+) <t>|pdx);
- (/b|a:<t>+y<t>|pdx);
< (/ 2 (¢ |pdm)l+(/ab|y<t>|pda:)’l’

= llzll -+l
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Take, for instance, the function x (t) = % € Ly [1,4], then

i = ([ :c<t>"’dxl)é
-

2 2
dx)
1
= VA

Example 44 Let X = Cy be the space of all sequences that converge to 0
and ||z|| = sup |z,|, © = (z,) (Co,||||), then (Co,||||) is a normed space.
neN

|
411

X

For instance, consider the sequences

1 11 1
— (=) =112 = . Veq,
o= (5) = p ) €0

with the norm

1
||| = sup |-
neN |1
I 1’
and 1 111
=|l=)=<===c — c C
Yy (Qn) {274787 ) ) } 0,
with the norm
Iyl g
= sup |—
Y neN 2
1
2

Example 45 The metric space (X, ||-||) in each of the following three cases
18 a normed space:

X =V, ||| = sup |z,|
neN

[

X=b el =(Sle)
X = Ly lo.8] il = esssupl (1)

te(a,b]
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Note that there is a difference between the supremum (sup) and essential
supremum (esssup). For instance, if

1,telo,1
2t =1,
then
esssup |z (t)| = 1,
t€0,1]
but
sup |z (t)] = 2.
t€[0,1]

Example 46 Consider the sequence

o0 3
2
]| = <Z |$n|)
n=1

Remark 47 Note that in the definition of a normed space, it was expilicitly
required that the space be a linear (vector) space. However, this is not a
condition for the space to be metric. Thus, a metric space is not necessarily
a normed space.
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Theorem 48 Fvery normed space is a metric space.

Proof. Let (X, |-]]) be a normed space and define d (x,y) = ||z — y|. We
have:

(1) d(z,y) =lz—yll Z0and d(z,y) =0 & |z —y]| =0z —y =
0 z=y.

(2) d(z,y) = llz —yll = lly — =l = d(y,x).

B)d(@y)=llz—yl=lz-z+z—yl <lz—zl+lz -yl =d(x 2)+
d(z,y) .

It simply follows that (X, d) is a metric space. m

2.1 Convergent Sequences
Definition 49 A sequence {x,} is convergent to a point a in the normed

space (X, |)) iff
lim ||z, —al =0,

which can be written as

Ve >0,3ng e NyVn e N:n > nyg = ||z, —al| <e.

2.2 Banach Spaces

Definition 50 The normed space (X, ||-||) is called a Banach space if every
Cauchy sequence is convergence in X .






Chapter 3

Inner Product Spaces

3.1 The Real Case

Definition 51 Let X be a vector space on R. The inner product (x,y) such
that

() XxX >R
(z,y) — (2,9),

satisfies the following conditions:

(1)Vx € X : (z,z) >0 and (z,z) =0 < x = 0.
(2)Vr,y € X : (x,y) = (y,x).

(3)Vr,y € X, VA e R: (Az,y) = A(x,y).

(4) YV, y,z € X : (x +y,2) = (x,2) + (y, 2) .

The space (X, (-,-)) is called an inner product space.

Remark 52 Based on the properties stated in Definition 51, we have:
(1) (0w + By, 2) = a (2, 2) + By, 2).

(2) (z,ay) = o (z,3)

(3) (&, ay + B2) = o (v,y) + B (x,2)

Example 53 Let X = R and (z,y) = zy. Then, (R,{(-,-)) is an inner
product space as it satisfies the four conditions:
(1)Vz € R: (z,z) =2* >0 and

(r,7) =0 2* =02 =0.

19
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(2) Yo,y e R:(x,y) = 2y = yor = (y,z) .
(3) Yoy, A € R: (\z,y) = Avy = A (z,y) .
(4)Vr,y,2 € R: {4y, 2) = (x+y)z=r2+yz = (r,2) + (Y, 2) .

Example 54 Let X = Ly [a,b] and (f,g) f f(t)g(t)dt. We have:
(1) (f.f) = [} (f (t)*dt >0 and

& Ve | ab] (f(t)*=0
& Vtela,b: f(t)=0
& f=0.
(2) (f.9)=Ju £ ( t) f gt = (9.£).
(3) A9y = [, A1 Af f >dt=A<fg>.
(4) f+gh J f h(t) dt = f [f(t) g(®)] = [, f (&) h (1) dt+
Jy ot = (/; h>+< >-
Therefore ( [a bl,(-,-)) is an inner product space.

Example 55 Let X = ly and (x,y) = > |xnyn|l- Is (X, (:,-)) an inner
n=1

product space? We have:

& VneN:22 =0
S VYneN:z,=0
& x=0.

(2) V:L‘,y € 62 : <I7 > Z |mnyn| - Z |yn$n| - <y I>

n=1
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[e.9]

(3) Vo € 690 € R (g) = 52 gl = 1SS feutal = I (0.0) #
Az, y) if A <0.
Hence, (-,-) is not an inner product and, consequently, (¢, (-,-)) is not an
inner product space.
Example 56 Let X =y and (z,y) = > x,yn. Is (X, {(-,*)) an inner prod-
n=1
uct space?
(1)Vx € by : (z,x) = > 22 >0 and
n=1

(x,x) = O@ZmizO
n=1

& VneN:22 =0
S VYneN:z,=0
& x=0.

(2) vx7y € 62 : <Jf,y> = lenyn = Zlyn$n - <y,x> :

(3) Va,y € lo, VA € R : (Az,y) = D ATpUn = AD_xnyn = A2, y) .
n=1

n=1
(4)Vx,y,z € by (x+y,2) = 21 (Tp + Yn) 2n = lenzn+ Zlynzn = (z,2)+

(y, 2).
Therefore, ({3, (-,-)) is an inner product space.

Example 57 Consider the two functions f(t) = t and g(t) = cost in
Ly [0, 7). The inner product as defined in Example 54 can be calculated as

(f.g) = /Oﬂf(t)g(t)dt

= / t costdt
0

= tsint]g—/ sin tdt
0

= cost]y = —2.
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Example 58 Consider the two sequences

1
—1,2, 2, Ve,
o= {ugpgejen

Yy = {1, 1,0, } S 62.

The inner product of the two sequences as defined in Example 56 is given by

<5L‘7y> = anyn

W

and

Proposition 59 Let (X, (-,-)) be an inner product space and define

2] = /(z,x).
Then,
[z, )| < =]l - llyll-
Proof. Let
_(zy) (=)
w.v)

We have 0 < ||z — \y||> = (z — Ay, z — \y)

lz = Ayl = (& = Ay, & — Ay)
= (z,2 — Ay) — A(y, 2 — \y)
= (z,2) = Mz, y) = My, z) + X {y,9)
= |l=l* = 2x (2, ) + X |ly?

- a () ()

(z,y)°  (z,y)?
lyll? ly|l”

2
T
Il

2
= [lz]” =2
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which is rearranged to produce
[z, )| < [l - [lyll
]

Proposition 60 Let (X, (-,-)) be an inner product space. Then, (X,|-||) is
a normed space where ||x|| = /(z, x).

Proof. We aim to prove that ||z|| = y/(z, z)is a valid norm by checking the
conditions in Definition ?7:
(1) We have

Vee X :(x,z) >0=+/(x,z) > 0= |z| >0,

and
|z]| =0 & {(z,2) =0 & (z,2) =0 < x = 0.
(2) We also have

Az]] = (Az, Az)

= \/ N (z,z)
= [\ V{z, z)

= [Al]l-
(3) Lastly,
lz +ylI* = (z+y.2+y)
= Jll® + Iyll* + 2 {z,v)
< ll® + llyll* + 211z - Iyl
= (llll +llyl)*
which yields
2 +yll < [l=ll + llyll-
Therefore, ||-|| is a norm and (X, ||-||) is a normed space. ®

Proposition 61 Let (X, (-,-)) be an inner product space and define ||z|| =

\{(z,x). Then,

2 2 2 2
Iz + yll” + llz =yl = 2 (21" + [lylI°) - (3.1)
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Remark 62 Not all norms are induced by an inner product. For a wvalid
norm to be induced by an inner product, it has to satisfy the equality 3.1.

Proof. Counter example: Consider the normed space (C'[0, 1], ||-||) where
|z|| = sup |x(t)| and defined the functions
te(0,1]

z(t)=1, y(t)=1t; t€[0,1],
which are clearly elements of C'[0, 1]. We have

=] =1, [lyll = sup [t]=1,
te(0,1]

leading to

[z +yll = sup |z (t) +y (1)l
t€[0,1]
= sup |1+t
t€[0,1]
=2

?

and

|z =yl = sup |z(t) —y (1)
te(0,1]

= sup |1 —t¢
t€[0,1]
= 1.

Since
2 2 2 2
x4+ yll* + lz —ylI* =5 #4=2([lz]" + ly]°) ,

then, C'[0, 1] is not an inner product space.
Counter example: Consider the normed space (o, ||||) where ||z| =
sup |z, | and let

neN

x=1(0,1,0,1,....) € b, ||z| =1,
and
We have
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and
Py (Ll € b o] = L

leading to
lz +yl* +llz —ylI* =2# 4 =2 (=" + lly]*) -
Countef example: Consider the normed space (¢, ||-||) where ||z| =
(il |a:n|p> ’ :p # 2, and define
z=(1,1,0,0,..), y = (1,-1,0,0,...) € {,.
The sum in difference are given by
x4y =(20,0,0,..),

and
x—1y=(0,2,0,0,...),

respectively. We have the norms

D=

[l =

o 1
> w) = 2,
n=1

=
Il
/N N R

(e

=

3

=
N~
D =

|

o

b

n=1
1
oo P
|z +yll = E:Mn+%f> =2,
n=1
and
1
oo P
Hx—yHZ(Ejmn—%W) =2,
n=1
leading to
2 2
|z +yll” + |z —ylI” =8,
and

2 2 2
2 (l=)* + llyll) = 4-25.
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This leads to a contradiction as
4.9 =8 p=2,
which in our case yields

2 2 2 2
lz + ylI” + llz = ylI” # 2 (21" + [ly[I°) -

Thus, (¢, ]-||) is not an inner product space for p # 2. =

3.2 The Complex Case

Definition 63 Let X be a vector space on C. The inner product (x,y) such
that

() XxX—=C

(z,y) = (z,v),

satisfies the following conditions:

(1)Vzx e X : (z,7) >0 and (v,2) =0 = 2 =0.
(2)Vr,y € X : (z,y) = (y, x).

(3)Vr,ye X, VA e C: (\x,y) = X(x,y) .

(4)Vx,y,z€ X : (x+y,2) =(x,2) + (y, 2) .

It follows that (X, (-,-)) is called an inner product space.

Proposition 64 The conditions shown in Definition 63 yields the following
fora,p€C and x,y,z € X:

(1) {ax + By, z) = a{x,2) + B (y,2) .

(2) (z,ay) = (ay,z) = a(y,z) =a(y,z) =a(z,y). B

(3) (x,ay + Bz) = (ay + Bz, x) =y, x) + B{z, ) = (z,y) + B (z,2).

Example 65 Consider the vector space X = C. We define the inner product
as

(z,y) = 7.
Then, (C,(-,-)) is an inner product space.
In order to show that (-,-) is an inner product, we verify the conditions of
Definition 63:
(1) The first condition is Vx € C: (x,z) > 0, which is clear as

(x,x) = 2T
2
= lzll; = 0.
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Also

(r,2) =0 |lz]5=0< 2 =0.
(2) The second condition is Vx,y € C: (z,y) = (y,x), which can be verified
as

(@,y) =2y =Y =yz = (y, 7).

(8) The third condition is VA € C,Vz,y € C. We have
(Az,y) = Aoy
= Maz,y)

(4) The last condition is Vx,y,z € C: (z +y,2) = (x,2) + (y, z), which is
verified by

(x+y,2)=(+y)Z=2Z+yz=(x,2) + (y,2).

Example 66 Let X = Lsyla,b] on C and f € X, i.e. f:[a,b] — C. We
define the inner product as

(f,9) = / F(t)g(t)dt.

Solution 67 Similar to the previous example, we verify the four conditions
of Definition 63:
(1) We have

(5 = [ # 0 T
=/Nuw@ﬁza

and

u¢>20®/WU@@ﬁ:o

s | f®l;=0
< F @, =0
& f=0on |a,b.
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(2) We have

(8) For the third condition:

(Afog) = / A (1) g (D)t

(4) Lastly,

Hence, (Lsla,b],(-,-)) where (f,g) = fabf(t)g(t)dt is an inner product
space.
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Example 68 Consider the space X = ly with v = (2,),cny and Yy = (Yn),en
on C. We define the inner product as

(2,9) =TT
n=1

To verify this, we have:

(1) We have
(x,x) = anx_n
n=1
= Z ||33n”§ >0,
n=1
and

(w,2) = 0& ) |zall;=0
n=1

S VneN: |z,3=0
& VneN:|z,],=0
S VneN:x,=0
< x=0.

(2) For the second condition, we have
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(3) Also,

(4) Lastly,

(x+y,2) = Z[mn—i‘yn]z

n

[
NE

(%02 + YnZn)

n=1
oo oo
n=1 n=1

= (z,2) +(y,2).-
Therefore, (Lo, (-,-)), with (x,y) = > " | T, Un, is an inner product space.

3.3 Hilbert Spaces

Definition 69 The inner product space (X, (-,-)) is called a Hilbert space if
it 1s complete, i.e. every Cauchy sequence is convergent on X.

Example 70 The inner product spaces (Lo |a,b],(-,-)) and ({2, (-,-)) (see
Ezxamples 56 and 54) are Hilbert spaces.

Remark 71 Since every inner product space is a normed space, every Hilbert
space is a Banach space.
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3.4 Orthogonality

Definition 72 Let (X, (-,-)) be an inner product space. The two elements
x,y € X are called orthogonal (x L y) if (z,y) =0.

Example 73 Consider the space Ly [0,27], and define the two functions
x (t) = sint,

and
y (t) = cost.

The inner product of the two functions is given by
2m
@) = [ a@yd
0

2
= / sint cos tdt
0

1 L :|27r
= —sin“x =0.
2 0

Thus, the two functions are orthogonal (x L y).

Remark 74 For the inner product space (X, (-,-)),
* The set {1, xs,...} C X is called an orthogonal set if

Yn,m (n#m): (x,,Tm) =0.

* The set {x1,22,...} C X is called an orthonarmal set if it is orthogonal

and
Vn: (zp,x,) = 1.

Example 75 Consider the set

{e1,€9,...} € Ly,

where
€1 — (1,0,0,0...),

€y = (O, 1,0,0) y
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€3 = (0,0, 1,0) s

e, = (0,0,0,0,...0,1,0...).
Therefore, since {en,em) = 0 where n # m then {ey, e, ...} is orthogonal,
and since (e, e,) =1 then {ey, ey, ...} is orthonormal.
Lemma 76 Let x,y € X be orthogonal elements. This is equivalent to
2 2 2
lz+ylI” = ll=[" + llylI”
Proof. By definition, since = and y are orthogonal, (x,y) = 0. Therefore,
lz+yl* = (z+y,2+y)
2 2
= |lzl” + llyll” + 2 (z, )
2 2
= [zl + llyl”

3.5 Projections

Definition 77 (Direct Sum) LetY and Z be subspaces of a vector (linear)
space X. We say that X is a direct sum of Y and Z, denoted by X =Y & Z,

if:
Vee X:dyeY,zeZ:x=y+z

Example 78 Consider the inner product space (R?, (-, -)) with (z,y) = x1y1+
x2ye and defined the spaces

X =R*={(o,0); a,f R},

Y =R x {0} ={(e,0); a €R},
and

Z={0} xR={(0,8); B€R}.
We can see that

R* = (R x {0}) ® ({0} x R),

Vo = (o, 8) €R?: (o, B) = (a,0) + (0, 5),

where (a,0) € (R x {0}) and (0,5) € ({0} x R).
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Definition 79 (Orthoplement) Let (X, (-,-)) be an inner product space.
The orthoplement of Y C X, denoted by Y, is defined by

Yi={yeX:y LY},
where y LY 1is equivalent to
VeeY ylua

Example 80 Consider the inner product space (R?, (-,-)). The orthoplement
of Y =R x {0} is given by

Y+ =1{0} xR.
Theorem 81 Let Y be a closed subspace of a Hilbert space H, then
H=YaY"

1.€.
VeeH, yeY,zeYt:ylzandr=y+ 2.

Definition 82 The element y € Y s called a projection of x € H. In this
case we can define a map

P: H—-Y

r— Pxr =y,

in which case P 1is called a projection operator.






Chapter 4

Operators

Definition 83 An operator A is a mapping form a set X into a setY, that
sA: X —-Y.

Example 84 The function f defined by f(xr) = z* maps the set X =
{1,2,5} into Y = {1,4,25}. We write
f: X—=>Y

x — x2.

Example 85 The differential opemtor Lmaps X = {t* sint, e’} into Y =
{2t, cot t,5e°}.

Example 86 Among the many types of zntegml opemtors we have:
(1) The Volttera integral operator Ax (t fo s)ds, which maps X =
{1,t3,e5} into Y = { 2L (e 5t—1)}

(2) The Fredholm mtegml Az (t) = fol x (s) ds, which maps X = {1,t% e}
intoY = {1, 3 5 (€5 — 1)}

(8) The Laplace integral operator A (f = [etf(t)dt maps X =
{]‘ t2 5t} into Y = {3’3278 1}

Definition 87 An operator A: X — Y where X, Y C R s called a function.
Definition 88 An operator A : X — R s called a functional.

Example 89 The Fredholm integral operator is an example of a functional.

35
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Definition 90 A operator A : X — Y s said to be linear if X and Y are
linear (vector) spaces on R and

Va,B €R, Yo,y € X : A(azx + By) = adz + BAy.

Example 91 The differential operator % 18 a linear one since

d d d

Stmilarly, the integral operator is linea as

/&m+ﬁw—a/x+ﬁ/y

Remark 92 The linear operator A : X — R is called a linear functional.

Example 93 Consider the functional A : X — R such that Az = 2%. We
have

Aoz + By) = (az + By)*
= o?2% + %% + 208y
# aAx + fAy
= az® + By,
and thus A is not a linear operator.

Example 94 For the functional Ax (t) = fol |z (s)|* ds, we have

1
A(az + Py) = / (ax + By)* ds
0

1 1
£ a/ x2d5+ﬁ2/ y*ds.
0 0

Hence, A is not a linear functional.

Example 95 The Laplace operator is linear since

A (ax + fBy) = /OO e (ax + By) ds
0

—/ ae“:cds+/ Be "tyds
0 0

= a/ e_St:Eds+ﬁ/ e *yds
0 0
— al(2)+ 8D (y).
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Definition 96 (Unit operator) The operator I : X — X s called a unit
operator if [x = x.

10
Example 97 The operator [ = is a unit operator from R? to R?
01
as
10 T T
01 Y Y

Definition 98 (Inverse operator) The operator B : Y — X s called a
left or right inverse of the operator A : X — Y if BA =1 or AB = 1,
respectively.
If B s the left and right inverse simultaneously, it is called the inverse,
denoted by A~1, i.e.

BA=AB=1.

Example 99 Let A := % and B := f(f According to the fundamental theo-

rem of calculus, we have

d t
& [ rwa=ro,

and
| gr@ds=riw-r.

Note that A is the left inverse of B but A is not the right inverse of B.
Similarly, B is the right inverse of A but B is not the left inverse of A.

Lemma 100 There exists at most one inverse to any operator.

Proof. Let A: X — Y. The proof is separated into two parts:

1) If no inverse exists, then we have nothing to prove.
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2) If B,C :Y — X are two inverses of A, then AC = [ and BA = I,
which leads to

= BAC
IC

Definition 101 Let (X, ||-||y) and (Y,||||y-) be two normed spaces. The op-
erator

A: X =Y

s said to be:
Bounded: If there exists C' > 0 such that Vx € X:

[Az]ly < Cllzlx -
Continuous: IfVr,y € X:

lim ||Az — Ay|, = 0.

lz—yllx—0

Example 102 Define the operator A : C'[0,1] — C'[0,1] as

Ax:/otm(s)ds.



We have

|Az][ =

IN

IN

Thus,

39

sup |Az (t)]
te[0,1]

t
sup /x(s)ds
tef0,1] |Jo

t
sup |z (s)| ds
tel0,1] Jo

1
Sup/ ||z|| ds
tel0,1] Jo

¢

]| sup / ds
tel0,1] Jo

|z sup ¢
te(0,1]

][ -

[Az|| < |||,

which shows that A is a bounded

operator.

Example 103 Define A: C'[0,1] - R

Ax:/olx(s)ds

[ Az]|

Then A is bounded operator.
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Example 104 Define T : X — R such that Tx = ||z||. We want to show
that T 1s a bounded operator. We have

1Tzl = |Tx]
= ll=[l

= [Jf].
Then, T is a bounded operator. Also, Vx,y € X:
[Te =Tyl = |Tz =Ty
= [llzll = llyll|
< flz =yl
leading to
lim ||Tz—Ty| =0,

lz—yl|—0

which means that T s continuous.

Example 105 Let us show that the differential operator is not bounded.
Consider the family of continuous functions on [0, 1]

{z,}={t"} n=1,23..
First, note that Vn € N, the norm of x,, is defined by

|a|l = sup [t"] = 1.
te[0,1]
We have
S| I |
da:xn | dx
= )
= nl[t"|
= n.
Note, as n — oo:
[zn| — 1
but
ol
dxx" =n — 00.

Therefore, there does not exist C > 0 such that ||z, | < C ||z,
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Theorem 106 A linear operator is bounded if and only if it is continuous.

Proof. If T" is a linear operator, then
T0) =T (z—ux)
=Txr—Tx
= 0.

Now, let us divide the proof of the equivalence into two main parts:
First, if T" is bounded then Vz,y € X : 3C' > 0. We have

[Tz =Tyl = T (z = )| < llz =yl

and thus
lim || Tz —Ty| = 0.

l|z—yl|—0
Hence, T' is continuous. This proves the forward implication.
Second, assume 7T is not bounded. It follows that there exists a sequence
{x,} such that
Vn e N:n |z, | < ||Tz,| -

*
Define a new sequence {z*} as

for which

7, = Olf = |

and

[Ty, = TO| = || Tl
digal

n |||

_ T

N
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Hence,
lim [, — 0] = 0,
n—oo

but
lim || Tx;, —T0| > 1,
n—oo

which implies that 7" is not continuous. m

Remark 107 The differential operator is linear unbounded, and thus it is
not continuous.

Example 108 Define the operator T : {o, — lo by Tx = z where x =
(xn), z=(zn), and
D i1 Ti

n
Let us show that T is linear, bounded and continuous.
First, we have

Zn =

T (x4 By) = <04x1+By1,a<x1+x2);5(yl+y2),...)

_ (ww) N (ﬁylw)

= « (a:l, xl;@,...) + (yl, yl;y2,...)

= oT (z) + BT (),

which 1mplies that T is a linear operator.

Second,
Il =sup {laal, 52
It follows that ¥Vn € N:
'Z?:l L
n

< Z?:l |

n

2 i |ll

n

< = [l

and thus
1Tzl <zl

which means that T 1s bounded . Now, since T is linear and bounded, then
it 18 continuous.
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4.1 Fundamontal Theorems

Theorem 109 (Riezs repesentation theorem) For every bounded linear
functional f defined on a Hilbert space H, i.e. f : H — R, there exists a
unique z € H such that

f(z)={(z,2), Vx € H. (4.1)
Remark 110 The functional f defined by (4.1) is bounded and linear since

f(ax+ By) = (ax+ Py, 2)
= a(z,2) + By, 2)
= af(z)+ 81 (y),

and

IF @) = 1f ()]

= (&, 2)] <[l =]l

leadings to

If @) < cllzllse=ll=]].
Hence, as [ is bounded and linear, it is continuous.
Theorem 111 (Hahn-Banach theorem) Assume G is a subspace of the
normed space E. For every linear functional f on G, there exists a linear
functional F defined on E such that

f(z)=F(x), Vr € G.

Remark 112 The functional F' is called an extention of f.

Definition 113 (Dual or conjugate space) The dual space of the normed
space E consists of all bounded linear functionals defined on E

f: EF—R.

This space is denoted by E*.
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Example 114 For E = C'|0, 1] and ||z|| = sup |z (t)|, we define f : C'[0,1] —
R by
1
f(x)= / x (t)dt.
0
Since f is a linear and bounded operator, then f € C*[0,1].

Remark 115 If E is a Hilbert space, then all functionals forming the dual
of the Hilbert space are of the form:

feH" VYreH, f(x)={zx,2), z€ H.
Theorem 116 The dual space E* with the norm

115 = sup )

w20 [[2] g

1s a Banach space.
Proposition 117 For every f € E*, we have
[f @) < S -Nl=ll, Vo e E. (*)

Proof. We consider two separate cases:

The first is where x = 0 , in which case (??) is true as f(0) = 0 and
10]] = 0.

The second case is where x # 0, which yields

|/ ()] |/ (2)]
EDS < S 1l g -
Therefore,
L@ < 1 fllge - Mzl s
[ |

Theorem 118 The dual space of L, [a,b] is isomorphic to L, [a,b] with % +
% =1 and p € [1,00) in the following sence:
For each f € L} [a,b], there exists a corresponding g € Lq [a,b] such that

We write
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Example 119 The following examples follow from the previous theorem

L;a,b] ~
Ly [a,b] ~ Ly[a,b],

1 1
Lyfa,b] ~ Ls [a,0] (—+——1>,

|

h
N
B
=

37 3/2
1 1
Li[a,b] ~ Ly [a,] <I+§:1)'

Example 120 Considering that p € [1,400) and% + % =1, we have
b, =Ly,

and

Exercise 121 Show that Cj ~ {1 and {5, C {;.

Definition 122 The normed space E is said to be reflexive if the second dual
E** is isomorphic to E; that is

E* = (E*)" ~ E.

Lemma 123 The following statements hold:
(1) The spaces L, [a,b] and ¢, for p € (1,400) are reflexive, i.e.

Ly [a,b] ~ Ly a,b],
and
0r =~ 0.
(2) All Hilbert spaces are reflexive.

(8) The space Cy is not reflexive as

Gy = (o)
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Definition 124 (Weak and Strong Convergence) Let{z,} be a sequence
in the normed space (E, ||-]]):

(1) We say that {z,} converges strongly to x, if
lim ||z, — x|z = 0.

n—oo

We write x,, — xg.
(2) We say that {z,} convergs weakly to xq if for every f € E*,

Jim |f () —  (a0)| = 0.
We write x,, — xg.

Remark 125 Strong convergence implies weak convergence. Consider the
following estimate

|f (zn) = [ (@o)| = | f (@0 — zo)| < IS - 20 — @0l -
If the right hand side goes to zero, i.e.
lim ||z, — zo||z =0,
then the right hand side does as well

lim | f (xn) = f (20)] = 0.

n—oo

Remark 126 There are weakly converging sequences that do not converge
strongly.

Example 127 Consider the Hilbert space {5 and the sequence {z,} where

r = (1,0,0,0, ..... ),
2o = (0,1,0,0,.....),
x5 = (0,0,1,0,.....),

z, = (0,0,...,0,1,0,.....).

Note that
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which yields

|z — 20|l = [(0,0,...,0,1,0,.....)|

= 1.

Therefore,
lim ||z, — 0] =1#0.

Hence, this sequence is not strongly convergent. However, since {5 is a Hilbert
space, then for any f € s, there exists a = {a,} € {3 such that f () = (x,a),
x € ly, then

f(zn) = (25, 0a)

= a,.
Since
o0
a=A{a,} € EQZCL% < 00,
n=1
we have

lim |a,| = 0.

n—oo

This along with the fact that

| (@n) = FO)] = [f (2n)]

- ’an’>

leads to

lim [f (z,) = f(0)] =0,

n—oo

then
T, — x9 = 0.

Definition 128 (Adjoint Operator) Let (X, (-,-)) be a an inner product
space. The adjoint operator T* of the operator T : X — X satisfies

Vo,y € X 1 (Ta,y) = (z,T7y) .
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Example 129 Define the operator T : Ly [0, 00] — Ly [0, 00] by

t
Tz (t) == <5>t€ [0,00).
We want to show that T* can be defined as
T*x (t) = bx (5t).

We have

(T,y) = / T (1) (1) de

and

We can integrate by substitution. Let

u=>5t, du=bdt
t=0—-u=0
t =00 — u = 00.
Substituting yields
@1y = o (3) vt du
0 5
From (4.2) and (4.3), we obtain
(Tr,y) = (z, T"y) .

Lemma 130 If T™* is the adjoint operator of T, then
(1)Va,y € X : (T"z,y) = (z, Ty),

(2) T =T, and

(3)Va e R: (aT)" = aT™*.
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Proof. First, for the field of real numbers R, we have:
(1) Vo,y € X :
(T"x,y) = (y, T"x)
= (y, T"z)
(T'y, )
= (2, Ty) .

Second, for the field of complex number C, we have:
(1) We have

(T2, y) = (y, T*x)
(y, T*z)
= (T'y,z)
(x,Ty) .

(2) For the second property, we have

(T"z,y) = (z,T"y)
= (Tz,y),

leading to
Ve,ye X o (T"x,y) = (Tx,y) .

Thus,
™ =T.

(3) For every a € R, we have

((@T) z,y) = (z,aTy)

= a(z,Ty)
= a(T"z,y)
= (aT"z,y) .
Therefore,
(aT)" = aT".
Note that if o € C,
(aT)* =aT*.
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Definition 131 An operator T is said to be self-adjoint if T' = T*; that is
Ve,y e X o (Tx,y) = (z,Ty).

Definition 132 An operator T is said to be unitary if T* = T~; that is
Yo,y € X : (Ta,y) = (2, T 'y).

Example 133 Let T : Ly [a,b] — Lo [a,b] where
Tx(t) =tz (t),t € la,b)].

We will prove that T is self-adjoint. We have
b
ey = [ Tay 0
ab
_ / t () y (1) dt, (4.4)

and

@Ty) = [ o Ty
_ / (6 by (0) (4.5)

From (4.4) and (4.5), we obtain that T is self-adjoint.
Example 134 Define the operator T : Ly [0,1] — Lo [0,1] by
Tz (t)=x(1—1)

Observe that
1
Ty = [ To@yd
01
= / z(1—1t)y(t)dt.
0
We use the following change of variable

u=1—t— du=—dt
t=0—u=1t=1—-u=0.
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Substitution yields
0
Toy) = = [ ety -wdu
/1
= / z(u)y (1 —u)du
0

= /0 x(u) Ty (u) du
= (z,Ty).

Hence, T is self-adjoint.

Lemma 135 Let T and S be two operators defined on the inner product
space (X, (-,-)), then

(1) TT* is self-adjoint, and

(2) (ST)" = T*S*.

Proof. For the first property, we have

leading to
(x, TT*y)y = (T"x, T"y) ,
which implies that T7T™ is self-adjoint.
For the second property,

((ST)z,y) = (Tx,S"y)
= (z,T*S"y) .

This produces

<(ST) €, y> = <I7 (ST)* y> )
which means that (ST)" =T*S*. m
Lemma 136 If T is a unitary operator then:

(1) It preserves the length of the element z, i.e. ||Tz| = ||z ..
(2) It preserves of the angle, i.e. (Tx,Ty) = (x,y).
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Proof. For the length, we have

|T2|? = (T, Ty)
= <x,T_1Ta7>

(z,z)

= |,

which leads to property (1).
For the angle, it is easy to see that

(T, Ty) = (x, T 'Ty)
{z,9) -



